Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T17:46:05.776Z Has data issue: false hasContentIssue false

Particle Fluctuation Velocity in Gas Fluidized Beds - Fundamental Models Compared to Recent Experimental Data

Published online by Cambridge University Press:  01 February 2011

G. D. Cody*
Affiliation:
Visiting Professor Mechanical and Aerospace Engineering, Rutgers University Mail Address: 30 Bainbridge St, Princeton NJ 08540, E-mail; gdcodypva@att.net
Get access

Abstract

The first measurements of the mean squared fluctuation velocity, or granular temperature, of monodispersed glass spheres in gas fluidized beds were recently obtained by two independent techniques: Power Spectral analysis of wall vibrational energy excited by random particle impact or Acoustic Shot Noise (ASN), and Diffusing Wave Spectroscopy (DWS) of reflected laser light multiply scattered by random particle motion. We explore the relevance of this data to the initial stability of the uniform fluidized state and to recent fundamental models for the magnitude, gas flow, and particle diameter dependence of the steady state granular temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilhelm, R. K., Kwauk, M., Chem. Eng. Progress, 44, (1948) 201218.Google Scholar
2. Geldart, D., Ed., Single particles, fixed, and quiescent beds and characterization of fluidized powders, John Wiley, New York, 1986, pp. 1151.Google Scholar
3. Jackson, R., in Fluidization, Davidson, J. F., Clift, R., Harrison, D., Eds., Academic Press, New York, 1985, pp. 4772.Google Scholar
4. Gidaspow, D., Multiphase Flow and Fluidization - Continuum and Kinetic Theory Descriptions, Academic Press, San Diego, 1994, p. 239354.Google Scholar
5. Nicolas, M., Chomaz, J.-M., Guazzelli, E., Phys. Fluids, 6, (1994) 39363944.Google Scholar
6. Cody, G. D., Goldfarb, D. J., Storch, G. V. Jr, Norris, A. N., Powder Technology, 87, (1996) 211232.Google Scholar
7. Cody, G. D., Goldfarb, D. J., in Dynamics in Small Confining Systems-III, Drake, M., Klafter, J., Kopelman, R., Eds., Vol. 464, Materials Research Society, Pittsburgh, Pa, 1997, pp. 325338.Google Scholar
8. Cody, G. D., Goldfarb, D. J., in Fluid.-IX, Fan, L.-S., Knowlton, T. M., Eds., Eng. Found., New York, 1998, pp. 5360.Google Scholar
9. Menon, N., Durian, D. J., Phys. Rev. Lett., 79, (1997) 34073410.Google Scholar
10. Wallis, G. B., One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969, p. 122–2 42.Google Scholar
11. Carnahan, N. F., Starling, K. E., J. Chem. Phys., 51, (1969) 635637.Google Scholar
12. Buyevich, Y. A., Kapbasov, S. K., Chem. Engng. Sci., 49, (1994) 12291243.Google Scholar
13. Buyevich, Y. A., Chem. Engng. Sci., 52, (1997) 123140.Google Scholar
14. Buyevich, Y. A., Kapbasov, S. K., Int. J. Fluid Mech. Res., 26, (1999) 7297.Google Scholar
15. Buyevich, Y. A., Ind. Eng. Chem. Res., 38, (1999) 731743.Google Scholar
16. Cody, G. D., Kapbasov, S. K., Buyevich, Y. A., in AIChE 1999 Symposium Series: Advanced Technologies for Fluid-Particle Systems, Arastoopour, H., Ed., Vol. 95 #321, AIChE, New York, 1999, pp. 712.Google Scholar
17. Johnson, K. L., Contact Mechanics, Cambridge University Press, Cambridge, 1986, p. 353.Google Scholar
18. Bizon, C. A., Simulations of Wave Patterns in Oscillated Granular Media, Thesis, Department of Physics, University of Texas at Austin (1998).Google Scholar
19. Koch, D. L., Phys. Fluids A, 2, (1990) 17111723.Google Scholar
20. Koch, D. L., Sangani, A. S., J. Fluid Mech., 400, (1999) 229263 Google Scholar
21. Buyevich, Y. A., Cody, G. D., Particle fluctuations in homogeneous fluidized beds, Paper 207 World Congress on Particle Technology-3, Brighton, UK (1998).Google Scholar