Skip to main content

Phonon Transport and Thermoelectricity in Defect-Engineered InAs Nanowires

  • Annie Weathers (a1) (a2), Arden L. Moore (a1) (a2), Michael T. Pettes (a1) (a2), Daniel Salta (a3) (a2), Jaehyun Kim (a1) (a2), Kimberly Dick (a4) (a5), Lars Samuelson (a4), Heiner Linke (a4), Philippe Caroff (a6) and Li Shi (a1) (a3) (a2)...

There have been reports of improvements in the thermoelectric figure of merit through the use of nanostructured materials to suppress the lattice thermal conductivity. Here, we report on a fundamental study of the combined effects of defect planes and surface scattering on phonon transport and thermoelectric properties of defect-engineered InAs nanowires. A microfabricated device is employed to measure the thermal conductivity and thermopower of individual suspended indium arsenide nanowires grown by metal organic vapor phase epitaxy. The four-probe measurement device consists of platinum resistance thermometers and electrodes patterned on two adjacent SiNx membranes. A nanowire was suspended between the two membranes, and electrical contact between the nanowire and the platinum electrodes was made with the evaporation of a Ni/Pd film through a shadow mask. The exposed back side of the device substrate allows for characterization of the crystal structure of the suspended nanowire with transmission electron microscopy (TEM) following measurement. The 100-200 nm diameter zincblende (ZB) InAs nanowire samples were grown with randomly spaced twin defects, stacking faults, or phases boundaries perpendicular to the nanowire growth direction, as revealed by transmission electron microscopy (TEM) analysis. Compared to single-crystal ZB InAs nanowires with a similar lateral dimension, the thermal conductivity of the defect-engineered nanowires is reduced by fifty percent at room temperature.

Hide All
1.Gudiken, M., Lauhon, L., Wang, J., Smith, D. and Lieber, C. M., Nature 409, 617 (2002).
2.Fasth, C., Fuhrer, A., Samuelson, L., Golavach, V. N. and Loss, D., Physical Review Letters 98, 266801 (2007).
3.Mingo, N., Applied Physics Letters 84 14, 2652 (2004).
4.Duan, X., Huang, Y., Cui, Y., Wang, J. and Lieber, C. M., Nature 409, 66 (2001).
5.Pei, Y., Heinz, N. A., LaLonde, A. and Snyder, G. J., Energy and Environmental Science 4, 3640 (2011).
6.Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. and Chen, G., Energy and Environmental Science 2, 466 (2009).
7.Koh, Y. K., Vineis, C. J., Calawa, S. D., Walsh, M. P. and Cahill, D. G., Applied Physics Letters 94, 153101 (2009).
8.Vineis, C. J., Shakouri, A., Majumdar, A. and Kanatzidis, M. G., Advanced Materials 22, 3970 (2010).
9.Dhara, S., Solanki, H. S., , A. P. R., Singh, V., Sengupta, S., Chalke, B. A., Dhar, A., Gokhale, M., Bhattacharya, A. and Deshmukh, M. M., Physical Review B 84, 121307 (2011).
10.Hollinger, G., Skheyta-Kabbani, R. and Gendry, M., Physical Review B 49 16, 11159 (1994).
11.Caroff, P., Dick, K. A., Johansson, J., Messing, M. E., Deppert, K. and Samuelson, L., Nature Nanotech 4, 50 (2009).
12.Thelander, C., Dick, K. A., Borgstrom, M. T., Froberg, L. E., Caroff, P., Nilsson, H. A. and Samuelson, L., Nanotechnology 21 14, 205703 (2010).
13.Kutty, M. N., Plis, E., Khoshakhlagh, A., Myers, S., Gautam, N., Smolev, S., Sharma, Y. D., Dawson, R., Krishna, S., Lee, S. J. and Noh, S. K., Journal of Electronic Materials 39 10, 2203 (2010).
14.Smolinsky, G., Chang, R. P. and Mayer, T. M., Journal of Vacuum Science and Technology 18 1, 12 (1981).
15.Yu, C., Saha, S., Zhou, J., Shi, L., Cassell, A., Cruden, B. A., Ngo, Q. and Li, J., Journal of Heat Transfer 128, 235 (2006).
16.Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P. and Majumdar, A., Journal of Heat Transfer 125, 881 (2003).
17.Mavrokefalos, A., Pettes, M. T., Zhou, F. and Shi, L., Review of Scientific Instruments 78, 034901 (2007).
18.Bowers, R., Ure, W., Bauerle, J. E. and Cornish, A. J., Journal of Applied Physics 30 6, 930 (1959).
19.Guillou, G. L. and Albany, H. J., Physical Review B 5 6, 2301 (1972).
20.Zhou, F., Moore, A. L., Bolinsson, J., Froberg, L., Pettes, M. T., Kong, H., Rabenberg, L., Caroff, P., Stewart, D. A., Mingo, N., Dick, K. A., Samuelson, L., Linke, H. and Shi, L., Physical Review B 83, 205416 (2011).
21.Thelander, C., Caroff, P., Plissard, S., Dey, A. W. and Dick, K. A., Nano Letters 11, 2424 (2011).
22.Schroer, M. D. and Petta, J. R., Nano Letters 10, 1618, (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 212 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2018. This data will be updated every 24 hours.