Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T05:04:29.213Z Has data issue: false hasContentIssue false

Photoluminescence and Electroluminescence Quenching in 8-Hydroxyquinoline Aluminum Chelates

Published online by Cambridge University Press:  10 February 2011

Xian-man Zhang
Affiliation:
Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269.
Keith A. Higginson
Affiliation:
Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269.
Fotios Papadimitrakopoulos
Affiliation:
Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269.
Get access

Abstract

The present communication proposes a mechanism for photoluminescence (PL) and electroluminescence (EL) quenching in aluminum(III) 8-hydroxyquinoline (Alq3) chelates. Our experiments indicate that in the presence of moisture, ligand exchange of 8-hydroxyquinoline with water can occur. At elevated temperatures, the liberated 8-hydroxyquinoline undergoes a condensation reaction in the presence of traces of oxygen, generating a dark, non-emissive polymeric compound. Spectroscopic and electrochemical methods were used to determine the band gap and energy levels (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)) of this byproduct. Steady state PL experiments indicate that (0.5 to 1%) concentration of this byproduct, evenly dispersed in Alq3 films, results in dramatic PL quenching. Deliberate insertion of an approximately 50 Å thick film of this byproduct into the interface of a poly(p-phenylenevinylene)/Alq3 light emitting diode (LED) completely quenches the EL as well. Initial data suggest an energy transfer quenching mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.Google Scholar
2. Kido, J.; Kimura, M.; Nagai, K. Science, 1995, 267, 1332.Google Scholar
3. Dodabalapur, A.; Rothberg, L.; Miller, T. M. Appl. Phys. Lett., 1994, 64, 2308.Google Scholar
4. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett., 1987, 51, 913.Google Scholar
5. Strukelj, M.; Jordan, R., Dodbalapur, A. JACS Comm., 1995, In Press.Google Scholar
6. Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Sapochak, L. S.; McCarthy, D. M.; Thompson, M. E. Appl. Phys. Lett., 1994, 65, 2922 Google Scholar
7. Abe, Y.; Onisawa, K.; Aratani, S.; Hanazono, M. J. Electrochemistry Soc., 1992, 193, 641.Google Scholar
8. Katsuta, S. Chem. Lett., 1994, 1239.Google Scholar
9. Shriver, D.F.; Drezdzon, M.A., The Manipulation of Air-Sensitive Compounds, Wiley- Interscience Pub.: 1986.Google Scholar
10. Papadimitrakopoulos, F.; Yang, M.; Rothberg, L.J.; Katz, H.E.; Chandross, E.A.; Galvin, M. E. Mol. Cryst. Liq. Cryst., 1994, 256, 663.Google Scholar
11. Sonsale, A.Y.; Gopinathan, S.; Gopinathan, C. Indian J. Chem., 1975, 14a, 408.Google Scholar
12. Papadimitrakopoulos, F.; Konstandinidis, K.; Miller, T.; Opila, R.; Chandross, E.; Galvin, M. Chemistry of Materials, 1994, 9, 1563.Google Scholar
13. Papadimitrakopoulos, F.; Konstandinidis, K.; Galvin, M. Macromolecules, 1994, Submitted for Publication.Google Scholar
14. Papadimitrakopoulos, F.; Haddon, R.C.; Yan, M.; Miller, T.M.; Rothberg, L.J.; Katz, H.E.; Galvin, M.E. ACS PMSE Preprint, 1995, 72, 455.Google Scholar
15. Wu, C.; Chun, J.; Burrows, P.E.; Sturm, J.C.; Thompson, M.; Forrest, S.R.; Register, R.A. Appl. Phys. Lett. 1995, 66, 653 Google Scholar