Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T00:00:31.448Z Has data issue: false hasContentIssue false

Photoluminescence of a Single-Crystal Silicon Quantum Well

Published online by Cambridge University Press:  28 February 2011

Peter N. Saeta
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440
Alan C. Gallagher
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440
Get access

Abstract

Single crystal-silicon quantum well layers with SiO2 barriers were grown from silicon-on-insulator substrates. Photoluminescence in the red and near-infrared was observed for average layer thickness < 8 nm, with peak signal for 2-nm thickness. The luminescence spectrum was essentially independent of well width for SiO2 barriers, but the photoluminescence intensity decreased sharply after annealing in Ar. These results suggest the importance of radiation from surface states. In contrast to oxide-passivated silicon nanocrystals and to porous silicon, the room-temperature photoluminescence quantum efficiency is low (10-4-10-5), probably due to variations in layer thickness and to diffusion of photoexcited carriers to fast nonradiative recombination centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Koch, F., Petrova-Koch, V., Muschik, T., Nikolov, A., and Gavrilenko, V., in Microcrystalline Semiconductors—Materials Science & Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993), p. 197.Google Scholar
3 Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).Google Scholar
4 Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11 (1993).Google Scholar
5 SIMOX (Separation by IMplantation of OXygen) is prepared from a standard silicon substrate by a high-density, high-energy oxygen implant (1018 cm-2, 190 keV, >600° C) followed by a high-temperature anneal (1320° C, 6 hrs, N2). This yields a slightly silicon-rich a-SiO2, layer between the crystalline substrate and a crystal silicon upper layer of the same orientation. See e.g. M. K. El-Ghor et al., Appl. Phys. Lett. 57, 156 (1990) and A. Wittkower et al., Nucl. Instr. and Meth. B55, 842 (1991).600°+C)+followed+by+a+high-temperature+anneal+(1320°+C,+6+hrs,+N2).+This+yields+a+slightly+silicon-rich+a-SiO2,+layer+between+the+crystalline+substrate+and+a+crystal+silicon+upper+layer+of+the+same+orientation.+See+e.g.+M.+K.+El-Ghor+et+al.,+Appl.+Phys.+Lett.+57,+156+(1990)+and+A.+Wittkower+et+al.,+Nucl.+Instr.+and+Meth.+B55,+842+(1991).>Google Scholar
6 The triple-implant wafer also had a lower density of threading dislocations in the silicon layer (<104 cm-2 vs. <5xl05 cm-2).Google Scholar
7 Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), pp. 781–2.Google Scholar
8 Jellison, G. E. Jr. and Modine, F. A., J. Appl. Phys. 53, 3745 (1982).Google Scholar
9 Handbook of Optical Constants of Solids II, edited by Palik, E. D. (Academic Press, Boston, 1991), pp. 759760.Google Scholar
10 Wilson, W. L., Szajowski, P. F., and Brus, L. E., Science 262, 1242 (1993).Google Scholar
11 Kanemitsu, Y., Phys. Rev. B 48, 12 (1993).Google Scholar
12 Chen, X., Henderson, B., and O'Donnell, K. P., Appl. Phys. Lett. 60, 2672 (1992).Google Scholar
13 Vial, J. C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., and Romestain, R., Phys. Rev. B 45, 14171 (1992).Google Scholar
14 A. Wittkower, private communication.Google Scholar
15 Nickel, N. H., Johnson, N. M., and Jackson, W. B., Appl. Phys. Lett. 62, 3285 (1993).Google Scholar
16 Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981) p. 851.Google Scholar