Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T17:01:35.874Z Has data issue: false hasContentIssue false

Photovoltaic Infrared Devices in Epitaxial Narrow Gap Lead Chalcogenides on Silicon Substrates

Published online by Cambridge University Press:  25 February 2011

H. Zogg
Affiliation:
AFIF (Arbeitsgemeinschaft für Industrielle Forschung) at Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
C. Maissen
Affiliation:
AFIF (Arbeitsgemeinschaft für Industrielle Forschung) at Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
J. Masek
Affiliation:
AFIF (Arbeitsgemeinschaft für Industrielle Forschung) at Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
T. Hoshino
Affiliation:
AFIF (Arbeitsgemeinschaft für Industrielle Forschung) at Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
S. Blunier
Affiliation:
AFIF (Arbeitsgemeinschaft für Industrielle Forschung) at Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
Get access

Abstract

We review MBE growth of epitaxial IV-VI layers on Si(111) substrates and fabrication of photovoltaic infrared devices in the layers. Cut-off wavelengths are chemically tailored from 3 µm up to above 12 µm by using PbS, PbTe, Pb1−xEuxSe and Pb1−xSnxSe. An intermediate epitaxial stacked CaF2-BaF2 bilayer of 200 nm thickness serves to overcome the large lattice- and thermal expansion mismatch, and device quality IV-VI layers are obtained with layer thicknesses of only 2–4 µm. The layers are untwinned single crystal, exhibit perfectly smooth surfaces with surface defect concentrations down to 103 cm−2, and x-ray rocking curve line-width of ≈150 arcsec. Despite the large thermal expansion mismatch, the (111)-oriented layers withstand multiple cooling cycles down to 15K without problems.

Although our IR-device fabrication technique is far from optimized, the sensitivities of our best photovoltaic sensors are comparable to MCT. IV-VI on Si IR sensors have the potential for a low cost technique of large IR focal plane arrays both for the 3–5 µm and 8–12 µm range because of the easy fabrication procedure and because uniformity problems are much less severe in IV-Vls due to the weaker dependence of the band-gap of Pb1−xSnxSe on composition x compared to MCT.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rogalski, A., Infrared Phys. 28, 139, 1988; A. Rogalski, J. Piotrowsky, Progress in Quantum Electronics 12, 88 1988.Google Scholar
[2] Nimtz, G., Schlicht, B., Dornhaus, R., Narrow-Gap Semiconductors, Springer Tracts in Modern Physics Vol. 98, 1985.Google Scholar
[3] Zogg, M., Spanger, C., Lambrecht, A., Norton, P.R., Böttner, H., Appl. Phys. Lest. 53, 2260, 1988.Google Scholar
[4] S Zogg, H., Heppi, M., Appl. Phys. Lett. 47, 133, 1985.Google Scholar
[5] Zogg, H., Blunier, S., Masek, J., J. Electrochem. Soc. 136, 775, 1989.CrossRefGoogle Scholar
[6] Zogg, H., Appl. Phys. Lett. 49, 933, 1986.Google Scholar
[7] Blunier, S., Zogg, H., Rèegge, A., Thin Solid Films 184, 387, 1990.Google Scholar
[8] Zogg, H., Maissen, C., Blunier, S., Masek, J., Meyer, V., Pixley, R.E., Mat. Res. Soc. Symp. Proc. 198, … 1990.Google Scholar
[9] Phillips, J.M., Mat. Res. Symp. Proc. 71, 97, 1986.Google Scholar
[10] Asano, T., Ishiwara, H., Kaifu, N., Jap. J. Appl. Phys. 22, 1474, 1983.Google Scholar
[11] Schowalter, L. J., Fathauer, R.W., CRC Crit. Reviews in Solid State and Mat. Sci. 15, 367, 1989.Google Scholar
[12] Holloway, H., Physics of Thin Films, Academic Press, Haas, G., Francombe, M. H. ed., Vol. 11, 1980, p. 105.Google Scholar
[13] Hoshino, T., Maissen, C., Zogg, H., Masek, J., Blunier, S., Tiwari, A.N., Teodoropol, S., Borer, W.J., Infrared Physics Feb. 1991, to be published.Google Scholar
[14] Zogg, H., Maier, P., Norton, P., Mat. Res. Soc. Symp. Proc. 56, 253, 1986.Google Scholar
[15] Tapfer, L., Martinez, J.R., Ploog, K., Semicond. Sci. Technol. 4, 617, 1988.Google Scholar
[16] Blunier, S., Zogg, H., Weibel, H., Appl. Phys. Left. 53, 1512, 1988.Google Scholar
[17] Morimoto, Y., Sudo, S., Yoneda, K., Mat. Res. Soc. Symp. Proc. 116, 413, 1988.Google Scholar
[18] Gilman, J.J., Acta Met. 7, 608, 1959.Google Scholar
[19] Evans, A.G., Pratt, P.L., Phil. Mag. 20, 1213, 1969.Google Scholar
[20] Maissen, C., Masek, J., Zogg, H., Blunier, S., Appl. Phys. Left. 53, 1608, 1988.Google Scholar
[21] Masek, J., Maissen, C., Zogg, H., Platz, W., Riedel, H., Koniger, M., Lambrecht, A., Tacke, M., Nucl. Instr. & Meths. A288, 104, 1990.Google Scholar
[22] Zogg, H., Maissen, C., Masek, J., Blunier, S., in “Advanced Infrared Detectors and Systems”, lEE conference publication No. 321, 1990, p. 36.Google Scholar
[23] Masek, J., Maissen, C., Ishida, A., Zogg, H., IEEE Electron Dev. Lett. 11, 12, 1990.Google Scholar
[24] Masek, J., Maissen, C., Zogg, H., Blunier, S., Weibel, H., Lambrecht, A., Spanger, B., Bottner, H., Tacke, M., J. de Physique C4 (Suppl. 49), 587, 1988.Google Scholar
[25] Zogg, H., Maissen, C., Masek, J., Blunier, S., Lambrecht, A., Tacke, M., Appl. Phys. Left. 55, 970, 1989.CrossRefGoogle Scholar