Skip to main content Accessibility help

Plasmonic Photocurrent Enhancement in Silicon-on-Insulator Devices Due to Colloidal Silver Nanoparticles

  • Birol Ozturk (a1), Eric A. Schiff (a1), Hui Zhao (a1), Fehmi Damkaci (a2), Baojie Yan (a3), Jeff Yang (a3) and Subhendu Guha (a3)...


A layer of silver nanoparticles created by thermal annealing of evaporated silver films can increase the photocurrents in silicon-on-insulator (SOI) devices by fivefold or more, but significant enhancements have been restricted to wavelengths greater than 800 nm. Here we report a significant enhancement of photoconductance at shorter wavelengths (500-750 nm) by using a monolayer of silver nanoparticles transferred from a colloidal suspension. Photocurrents on SOI increased in the 500-750 nm spectral range with the addition of silver nanoparticles, with enhancements more than two times; enhancements at longer wavelengths were small, in contrast to results with annealed silver films. We prepared similar colloidal silver nanoparticle monolayers layers on nanocrystalline silicon solar cells with conducting oxide top layers. There is an overall decrease in the quantum efficiency of these cells with the deposition of silver nanoparticles. We attribute these effects to the substantial substrate-mediated changes in the localized surface plasmon resonance frequencies of the differing nanoparticle configurations.



Hide All
[1] Stuart, H. R. and Hall, D. G., Appl. Phys. Lett., 73 3815 (1998).
[2] Pillai, S., Catchpole, K. R., Trupke, T., Green, M. A., J. of Appl. Phys., 101, 093105 (2007).
[3] Ozturk, B., Zhao, H., Schiff, E. A., Yan, B., Yang, J., Guha, S., unpublished.
[4] Derkacs, D., Lim, S. H., Matheu, P., Mar, W., and Yu, E. T., Appl. Phys. Lett., 89, 093103 (2006); Lim, S. H., Derkacs, D., and Yu, E. T., J. Appl. Phys. 105, 073101 (2009).
[5] Evanoff, D. D. Jr., Chumanov, G., J. Phys. Chem. B, 108, 13948 (2004).
[6] Yang, J., Yan, B., Yue, G., Guha, S., D. Mater. Res. Soc. Symp. Proc. 1153-A13-02, (2009).
[7] Beck, F. J., Mokkapati, S., Polman, A., and Catchpole, K. R., Appl. Phys. Lett., 96, 033113 (2010).
[8] Zhao, H., Ozturk, B., Schiff, E. A., Yan, B., Yang, J. and Guha, S., in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology — 2010, edited by Wang, Q., Yan, B., Higashi, S., Tsai, C.C., Flewitt, A. (Mater. Res. Soc. Symp. Proc. Volume 1245, Warrendale, Pennsylvania), pp. A0302 – A03-07.
[9] Beck, F.J., Polman, A. and Catchpole, K.R., J. Appl. Phys. 105, 114310 (2009).
[10] Khlebtsov, N. G., Trachuk, L. A., and Mel’nikov, A. G., Optics and Spectroscopy, 98, 77 (2005).
[11] Protsenko, E. and O’Reilly, E. P., Phys. Rev. A, 74, 033815 (2006). We used their equation (13); for more details, see ref. [8].
[12] Johnson, P. B. and Christy, R.W., Phys. Rev. B, 6, 4370 (1972).
[13] Mertz, J., J. Opt. Soc. Am. B, 17, 1906 (2000).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed