Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T02:48:30.925Z Has data issue: false hasContentIssue false

Preparation of New Bismuth Oxides by Hydrothermal Reaction

Published online by Cambridge University Press:  18 March 2011

N. Kumada
Affiliation:
Faculty of Engineering, Yamanashi University, Miyamae-cho 7, Kofu 400-8511Japan
T. Takei
Affiliation:
Faculty of Engineering, Yamanashi University, Miyamae-cho 7, Kofu 400-8511Japan
N. Kinomura
Affiliation:
Faculty of Engineering, Yamanashi University, Miyamae-cho 7, Kofu 400-8511Japan
A. W. Sleight
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
Get access

Abstract

Hydrothermal reactions using NaBiO3·nH2O produced a variety of newbismuth oxides that were not prepared by high temperature reaction. Some of them have pentavalent bismuth such as Bi2O4O, LiBiO3, ABi2O6 (A = Mg, Zn) and AgBiO3. When using transition metal or rare-earth metal solutions, new bismuth oxides with trivalent bismuth were obtained. In the case of Cr(NO3)3 solution a chromium bismuth oxyhydroxide, HBi3(CrO4)2O3, was prepared at 180°C, while in A2CrO4 (A = Li, Na, K) solution a new bismuth chromium oxide, Bi8(CrO4)O11, was prepared above 180°C. When A2MoO4 (A = Li, Na, K) solution was used, a new phase appeared above 220°C. By using A2WO4 (A = Li, Na, K) solution β-Bi2O3 and Bi2WO6 were obtained above 220°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kumada, N., Hosoda, M. and Kinomura, N., J. Solid State Chem., 106, 476 (1993).Google Scholar
2. Kinomura, N., Hosoda, M., Kumada, N. and Kojima, H., J. Ceram. Soc. Japan., 101, 966 (1993).Google Scholar
3. Kumada, N., Kinomura, N., Kodialam, S. and Sleight, A. W., Mater. Res. Bull., 29, 497 (1994).Google Scholar
4. Kodialam, S., Kumada, N., Mackey, R. and Sleight, A. W., European J. Solid State and Inorg. Chem., 31, 739 (1994).Google Scholar
5. Kinomura, N. and Kumada, N., Mater. Res. Bull., 30, 129 (1995).Google Scholar
6. Kumada, N., Kinomura, N., Woodward, P. M. and Sleight, A. W., J. Solid State Chem., 116, 281 (1995).Google Scholar
7. Kumada, N., Kinomura, N., Takahashi, N. and Sleight, A. W., J. Solid State Chem., 126, 121 (1996).Google Scholar
8. Kumada, N., Kinomura, N., Takahashi, N. and Sleight, A. W., Mater. Res. Bull., 32, 1003 (1997).Google Scholar
9. Kumada, N., Kinomura, N., Takahashi, N. and Sleight, A. W., J. Solid State Chem., 139, 321 (1998).Google Scholar
10. Kumada, N. and Kinomura, N., Mat. Res. Soc. Symp. Proc., 547, 227 (1999).Google Scholar
11. Kumada, N., Kinomura, N., and Sleight, A. W., Mater. Res. Bull.,in press.Google Scholar
12. Kumada, N., Takei, T. and Kinomura, N., in preparation.Google Scholar
13. Izumi, F., Kobutsugaku Zasshi, 17, 37 (1985).Google Scholar
14. Kumada, N., Kinomura, N. and Sleight, A. W., Solid State Ionics, 122, 183 (1999).Google Scholar
15. Begemann, B. and Jansen, M., J. Less-Common Metals, 156, 123 (1980).Google Scholar
16. Egashira, M., Matsuo, K., Kagawa, S. and Seiyama, T., J. Catal., 58, 409 (1979).Google Scholar
17. Buttrey, D. J., Jefferson, D. A. and Thomas, J. M., Mater. Res. Bull., 21, 739 (1986).Google Scholar