Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T08:55:31.562Z Has data issue: false hasContentIssue false

Preparation of The Double-Sided YBa2Cu3O7-δ Thin Film by Hot-Wall Type Mocvd

Published online by Cambridge University Press:  15 February 2011

Y. Ito
Affiliation:
Superconductivity Research Laboratory, ISTEC, Nagoya 456, Japan
M. Iwata
Affiliation:
Department of Electrical Engineering & Electronics, Nagoya University, Nagoya 464–01, Japan
Y. Yoshida
Affiliation:
Superconductivity Research Laboratory, ISTEC, Nagoya 456, Japan
Y. Takai
Affiliation:
Department of Electrical Engineering & Electronics, Nagoya University, Nagoya 464–01, Japan
I. Hirabayashi
Affiliation:
Superconductivity Research Laboratory, ISTEC, Nagoya 456, Japan
Get access

Abstract

A hot-wall type metal organic chemical vapor deposition (MOCVD) apparatus has been developed for the deposition of the YBa2Cu3O7-δ (YBCO) films using liquid metal organic sources on arbitrary shaped substrates. By improving the reactor shape and gas flow of the source materials, we succeeded in fabricating the double-sided YBCO films for electronic and microwave devices and the YBCO-coated conductor on oxide fiber for power applications. Tc(zero)'s of the YBCO film on both sides of the LaAlO3 (100) substrate were 90K and 86K, respectively. The films on the facet of the single crystalline SrTiO3 fiber showed the single phase c-axis orientation with biaxially alignment in the a / b plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshitake, T., Tsuge, H., Inui, T. and Suzuki, S., Jpn. J. Appl. Phys. 33, pp. L1156 (1994)Google Scholar
2. Bodin, P., Skov, J. L., Kuhle, A., Hagensen, M., Clausen, T., Rasmussen, I., Hjorth, S. and Hansen, J. B., Supercond. Sci. Technol. 7, p. 717 (1994)Google Scholar
3. Face, D. W., Wilker, C., Shen, Z. -Y., Pang, P. and Small, R. J., IEEE Trans on Appl. Supercond., 5, p. 1581 (1995)Google Scholar
4. Lu, Z., Truman, J. K., Johansson, M. E., Zhang, D., Shih, C. F. and Liang, G. C., Appl. Phys. Lett. 67(5), p. 712 (1995)Google Scholar
5. Onabe, K., Kohno, O., nagaya, S., Shimonosono, T., Iijima, Y., Sadakata, N. and Saito, T., Materials Transactions, JIM, 37(4), pp. 893 (1996)Google Scholar
6. Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C. and List, F. A., Science 274, p. 755 (1996)Google Scholar
7. Kawashima, J., Yamada, Y. and Hirabayashi, I., Advances in Superconductivity VIII. Springer-Verlag, Tokyo, p. 767 (1995)Google Scholar
8. Matsubara, M., Higashiyama, K. and Hirabayashi, I., Advances in Superconductivity V. Springer-Verlag, Tokyo, p. 837 (1992)Google Scholar
9. Ito, Y., Yoshida, Y., Mizushima, Y., Hirabayashi, I., Nagai, H. and Takai, Y., Jpn. J. Appl. Phys. 35, pp. L825 (1996)Google Scholar
10. Nagai, H., Yoshida, Y, Ito, Y, Taniguchi, S., Hirabayashi, I., Matsunami, N. and Takai, Y, Supercond. Sci. Technol., in pressGoogle Scholar
11. Yamada, Y., Niiori, Y, Yoshida, Y., Hirabayashi, I. and Tanaka, S., J. Crystal Growth 167, p. 566 (1996)Google Scholar