Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:02:07.621Z Has data issue: false hasContentIssue false

Pt3In7 Ohmic Contacts to n-TYPE GaAs

Published online by Cambridge University Press:  25 February 2011

D. Swenson
Affiliation:
Materials Science Program, University of Wisconsin, Madison, WI 53706
Y. A. Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706
Get access

Abstract

A thermodynamic and kinetic rationale was utilized to select Pt3In7 as an ohmic contact to n-GaAs. This analysis predicted that the contact metallurgy would be very simple and extremely uniform upon annealing. Preliminary electrical results showed that annealing samples at temperatures of 650 °C or higher led to ohmic behavior. A contact resistance of 3.4 × 10-5 Ω-cm2 was found upon annealing an uncapped contact at 750 °C for 15 s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murakami, et al Appl. Phys Lett. 51, 664 (1987).Google Scholar
2. Murakami, M., Shih, Y. -C., Price, W. H., Wilkie, E. L., Childs, K. D. and Parks, C. C., J. Appl. Phys. 64, 1974 (1988).CrossRefGoogle Scholar
3. Shih, Y. -C., Murakami, M. and Price, W. H., J. Appl. Phys. 65, 3539 (1989).Google Scholar
4. Murakami, M., Price, W. H., Greiner, J. H., Feder, J. D. and Parks, C. C., J. Appl. Phys. 65, 3546 (1989).Google Scholar
5. Murakami, M., Price, W. H., Norcott, M., Hallali, P. -E., J. Appl. Phys. 68, 2468 (1990).Google Scholar
6. Kim, H. -J., Murakami, M., Wright, S. L., Norcott, M., Price, W. H. and La Tulipe, D., J. Appl. Phys 68, 2475 (1990).Google Scholar
7. Hugon, M. C., Agius, B., Varniere, F., Dubon-Chevalier, C., Bresse, J. F., Froment, M., Appl. Phys. Lett. 58, 2773 (1991).Google Scholar
8. Hallali, P. -E., Murakami, M., Price, W. H. and Norcott, M. H., J. Appl. Phys. 70, 7443 (1991).Google Scholar
9. Allen, L. H., Hung, L. S., Kavanaugh, K. L., Phillips, J. R., Yu, A. J. and Mayer, J. W., Appl. Phys. Lett. 51, 326 (1987).CrossRefGoogle Scholar
10. Wang, L. C., Wang, X. Z., Lau, S. S., Sands, T., Chan, W. K. and Kuech, T. F., Appl. Phys. Lett. 56, 2129 (1990).CrossRefGoogle Scholar
11. Wang, L. C., Wang, X. Z., Hsu, S. N., Lau, S. S., Lin, P. S. D., Sands, T., Schwarz, S. A., Plumton, D. L. and Kuech, T. F., J. Appl. Phys. 69, 4364 (1991).Google Scholar
12. Marvin, D. C., Ives, N. A. and Leung, M. S., J. Appl. Phys. 58, 2659 (1985).CrossRefGoogle Scholar
13. Sands, T., Keramidas, V. G., Yu, A. J., Yu, K. -M, Gronsky, R. and Washburn, J., J. Mater. Res. 2, 262 (1987).Google Scholar
14. Terry, L. E. and Wilson, R. W., Proc. of the IEEE 57, 1580 (1969).Google Scholar
15. Kuphal, E., Solid-State Electron. 24, 69 (1981).Google Scholar
16. Antiypas, G. A., J. Electrochem. Soc. 117, 1393 (1970).Google Scholar
17. Foster, L. W., J. Electrochem. Soc. 121, 1662 (1974).Google Scholar
18. Zheng, X. -Y., Schulz, K. J., Lin, J. -C. and Chang, Y. A., J. Less-Common Metals 146, 233 (1989).CrossRefGoogle Scholar
19. El-Boragy, M. and Schubert, K., Z. Metallkde. 61, 579 (1970).Google Scholar
20. Massalski, T. B., Ed.-in-Chief, Binary Allov Phase Diagrams, 2nd ed. (ASM International, Materials Park, Ohio, 1990).Google Scholar
21. Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, (ASM International, Materials Park, Ohio, 1985).Google Scholar
22. Schultz, A. E., PhD Thesis, University of Wisconsin-Madison (1988).Google Scholar