Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T11:20:19.326Z Has data issue: false hasContentIssue false

Pt/Au and W/Pt/Au Schottky Contacts to Bulk n-ZnO.

Published online by Cambridge University Press:  26 February 2011

Kelly Ip
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Brent Gila
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Andrea Onstine
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Eric Lambers
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Young-Woo Heo
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
David Norton
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Stephen Pearton
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Jeffrey LaRoche
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida.
Fan Ren
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida.
Get access

Abstract

UV-ozone cleaning prior to metal deposition of either e-beam Pt contacts or sputtered W contacts on n-type single-crystal ZnO is found to significantly improve their rectifying characteristics. Pt contacts deposited directly on the as-received ZnO surface are Ohmic but show rectifying behavior with ozone cleaning. The Schottky barrier height of these Pt contacts was 0.70 eV, with ideality factor of 1.5 and a saturation current density of 6.2 × 10−6 A·cm−2. In contrast, the as-deposited W contacts are Ohmic, independent of the use of ozone cleaning. Post-deposition annealing at 700 °C produces rectifying behavior with Schottky barrier heights of 0.45 eV for control samples and 0.49 eV for those cleaned with ozone exposure. The improvement in rectifying properties of both the Pt contacts is related to removal of surface carbon contamination from the ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Look, D.C., Mater. Sci. Eng. B80, 383 (2001).Google Scholar
2. Garcia, P.F., McLean, R.S., Reilly, M.H. and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
3. Kim, K., Kim, H., Hwang, D., Lim, J., Park, S., Appl. Phys. Lett, 83, 63 (2003).Google Scholar
4. Heo, Y. W., Park, S. J., Ip, K., Pearton, S. J., Norton, D. P., D.P., , Appl. Phys. Lett., 83, 1128 (2003).Google Scholar
5. Wraback, M., Shen, H., Liang, S., Gorla, C.R. and Lu, Y., Appl. Phys. Lett. 74, 507 (1999).Google Scholar
6. Look, D.C., Reynolds, D.C., Hemsky, J.W., Jones, R.L. and Sizelove, J.R., Appl. Phys. Lett. 75 811 (1999).Google Scholar
7. Look, D.C., Hemsky, J.W. and Sizelove, J.R., Phys. Rev. Lett. 82, 2552 (1999).Google Scholar
8. Auret, F.D., Goodman, S.A., Hayes, M., Legodi, M.J., van Laarhoven, H.A. and Look, D.C., Appl. Phys. Lett. 80, 956 (2002).Google Scholar
9. Kucheyev, S.O., Bradley, J.E., Williams, J.S., Jagadish, C. and Swain, M.V., Appl. Phys. Lett. 80, 956 (2002).Google Scholar
10. Wraback, M., Shen, H., Liang, S., Gorla, C.R., and Lu, Y., Appl. Phys. Lett. 76, 507 (1999).Google Scholar
11. Aoki, T., Look, D.C., and Hatanaka, Y., Appl. Phys. Lett. 76, 3257 (2000).Google Scholar
12. Krishnamoorthy, S., Iliadis, A.A., Inumpudi, A., Choopun, S., Vispute, R.D. and Venkatesan, T., Solid-State Electron. 46, 1631 (2002).Google Scholar
13. Lee, J.-M., Kim, K.-K., Park, S.-J. and Choi, W.-K., Appl. Phys. Lett. 78, 3842 (2001).Google Scholar
14. Iliadis, A.A., Vispute, R.D., Venkatesan, T., and Jones, K.A., Thin Solid Films, 420–421, 478 (2002).Google Scholar
15. Inumpudi, , Iliadis, A.A., Krishnamoorthy, S., Choopun, S., Vispute, R.D., and Venkatesan, T., Solid-State Electron. 46, 1665 (2002).Google Scholar
16. Kim, H.-K., Han, S.-H., Seong, T.-Y., and Choi, W.-K., J., Appl, Phys. Lett. 77, 1647 (2000).Google Scholar
17. Sheng, H., Emanetoglu, N.W., Muthukumar, S., Feng, S., and Lu, Y., J. Electron. Mater., 31, 811 (2002).Google Scholar
18. Sheng, H., Emanetoglu, N.W., Muthukumar, S., Yakshinskiy, B.V., Feng, S., and Lu, Y., J. Electron. Mater., 32, 935 (2003).Google Scholar
19. Kim, H.-K., Kim, K.-K., Park, S.-J., Seong, T.-Y., and Adesida, I., J. Appl. Phys. 94, 4225 (2003).Google Scholar
20. Kim, S.Y., Jang, H.W., Kim, J.K., Jeon, C.M., Park, W.I., Yi, G.C., and Lee, J.-L., J. Electron. Mater., 31, 868 (2002).Google Scholar
21. Mead, C.A., Phys. Lett. 18, 218 (1965).Google Scholar
22. Neville, R.C. and Mead, C.A., J. Appl. Phys. 41, 3795 (1970).Google Scholar
23. Sheng, H., Muthukumar, S., Emanetoglu, N.W. and Lu, Y., Appl. Phys. Lett. 80, 2132 (2002).Google Scholar
24. Auret, F.D., Goodman, S.A., Hayes, M., Legodi, M.J and van Laarhoven, H.A., Appl. Phys. Lett. 79, 3074 (2001).Google Scholar
25. Coppa, B.J., Davis, R.F. and Nemanich, R.J., Appl. Phys. Lett. 82, 400 (2003).Google Scholar
26. Polyakov, A.Y., Smirnov, N., Kozhukhova, E., Vdovin, V., Ip, K., Heo, Y.W., Norton, D.P. and Pearton, S.J., Appl. Phys. Lett. 83, 1575 (2003).Google Scholar
27. Ip, K., Baik, K., Heo, Y.W., Norton, D.P., Pearton, S.J., LaRoche, J.R., Ren, F. and Zavada, J.M., J. Vac. Sci. Technol. B 21, 2378 (2003).Google Scholar