Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-27T09:21:21.958Z Has data issue: false hasContentIssue false

Raman Spectroscopy of Ion-Implanted Silicon

Published online by Cambridge University Press:  15 February 2011

David D. Tuschel
Affiliation:
Imaging Research and Advanced Development Eastman Kodak Company, Rochester, NY 14650-2017
James P. Lavine
Affiliation:
Microelectroncs Technology Division Eastman Kodak Company, Rochester, NY 14650-2008
Get access

Abstract

Raman spectroscopy is used to characterize silicon implanted with boron at a dose of 1014/cm2 or less and thermally annealed. The Raman scattering strengths and band shapes of the first-order optical mode at 520 cm-1 and of the second-order phonon modes are investigated to determine which modes are sensitive to the boron implant. The asimplanted samples show diminishing Raman scattering strength as the boron dose increases when the incident laser beam is 60° with respect to the sample normal. Thermal annealing restores some of the Raman scattering strength. Three excitation wavelengths are used and the shortest, 457.9 nm, yields the greatest spectral differences from unimplanted silicon. The backscattering geometry shows a variety of changes in the Raman spectrum upon boron implantation. These involve band shifts of the first-order optical mode, bandwidth variations of the first-order optical mode, and the intensity of the second-order mode at 620 cm-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Braunstein, G., Tuschel, D., Chen, S., and Lee, S.-T., J. Appl. Phys. 66, 3515 (1989).Google Scholar
2. Huang, X., J. Phys. D: Appl. Phys. 28, 202 (1995).Google Scholar
3. Huang, X., Ninio, F., Brown, L. J., and Prawer, S., J. Appl. Phys. 77, 5910 (1995).Google Scholar
4. Othonos, A. and Christofides, C., Nucl. Instrum. Meth. Phys. Res. B 1117, 367 (1996).Google Scholar
5. Tuschel, D. D., Lavine, J. P., and Russell, J. B., in Diagnostic Techniques for Semiconductor Materials Processing II, edited by Pang, S. W., Glembocki, O. J., Pollak, F. H., Celii, F. G., and Torres, C. M. Sotomayor (Mater. Res. Soc. Proc. 406, Pittsburgh, PA, 1996) pp. 549554.Google Scholar
6. de Wilton, A. C., Simard-Normandin, M., and Wong, P. T. T., SPIE 623, 26 (1986).Google Scholar
7. de Wilton, A. C., Simard-Normandin, M., and Wong, P. T. T., J. Electrochem. Soc. 133, 988 (1986).Google Scholar
8. Uchinokura, K., Sekine, T., and Matsuura, E., Solid State Commun. 11, 47 (1972).Google Scholar
9. Uchinokura, K., Sekine, T., and Matsuura, E., J. Phys. Chem. Solids 35, 171 (1974).Google Scholar
10. Cardona, M., Chen, S. C., and Varma, S. P., Phys. Rev. B 23, 5329 (1981).Google Scholar
11. DeWolf, I., Semicond. Sci. Technol. 11, 139 (1996).Google Scholar
12. Tanino, H., Kuprin, A., Deai, H., and Koshida, N., Phys. Rev. B 53, 1937 (1996).Google Scholar