Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T05:58:42.811Z Has data issue: false hasContentIssue false

Rapid Synthesis of Nanocrystalline ZnGa2O4 Phosphor at Low Temperature

Published online by Cambridge University Press:  25 April 2012

Suresh D. Kulkarni
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India. Materials Research Centre, Indian Institute of Science, Bangalore, India.
S. A. Shivashankar
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India. Materials Research Centre, Indian Institute of Science, Bangalore, India.
Get access

Abstract

A novel microwave-assisted synthesis technique was used for the rapid preparation of nanocrystalline ZnGa2O4 at two different temperatures. The crystalline spinel oxide is formed at temperatures as low as 100 oC within few minutes, at a high yield of 96%, requiring no post-synthesis annealing. The as-prepared samples are polycrystalline and phase-pure as verified by XRD, with a crystallite size of ∼5 nm. Polycrystalline ZnGa2O4 substituted with Mn2+, Cr3+, Cu2+, and Co2+ was also similarly prepared. All samples are highly monodispersed, as measured by TEM. The ZnGa2O4 nanocrystals without further surface modification can be readily dispersed in chloroform to form a fully transparent colloidal solution, using which the bandgap of ZnGa2O4 was determined to be ~4.5 eV. The entire synthesis procedure, including solution preparation, microwave irradiation, and centrifugation takes about 30 minutes, which is faster than any procedure reported for a complex oxide like ZnGa2O4, as well as one with a small thermal budget. Photoluminescence shows a broad emission extending from 330 nm to 800 nm, which is surmised to be due to the defect structure in the oxide produced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasile, M., Vlazan, P. and Avram, N. M., J. Alloys and Compounds 500, 185 (2010).Google Scholar
2. Kima, J. S., Kima, J. S., Kima, T. W., Parka, H. L., Kima, Y. G., Changa, S. K. and Han, S. D., Solid State Communications 131, 493 (2004).Google Scholar
3. Hirano, M., J. Mater. Chem. 10, 469 (2000)Google Scholar
4. Chen, L., Liu, Y., Lu, Z., Huang, K., Materials Chemistry and Physics 97, 247 (2006).Google Scholar
5. Hirano, M., Imai, M., and Inagaki, M., J. Am. Ceram. Soc. 83, 977 (2000).Google Scholar
6. Dutta, D. P., Ghildiyal, R. and Tyagi, A. K., J. Phys. Chem. C 113, 16954 (2009).Google Scholar
7. Hsu, K., Yang, M. and Chen, K., J. Mat. Sci. 9, 283 (1998)Google Scholar
8. Wu, S. and Cheng, H., J. Electrochem. Soc. 151, H159 (2004).Google Scholar
9. Cao, M., Djerdj, I., Antonietti, M. and Niederberger, M., Chem. Mater. 19, 5830(2007).Google Scholar
10. Seo, S., Yang, H. and Holloway, P. H., J. Lumin. 129, 307 (2009).Google Scholar
11. Cha, J. H., Kim, K. H., Park, Y. S., Park, S. J. and Choi, H.W., Mol. Cryst. Liq. Cryst. 499, 85 (2009).Google Scholar
12. Komarneni, S., Roy, R. and Li, Q. H., Mat. Res. Bull., 27, 1393(1992).Google Scholar
13. Bilecka, I. and Niederberger, M., Nanoscale, 2, 1358(2010).Google Scholar
14. Conrad, F., Zhou, Y., Yulikov, M., Hametner, K., Weyeneth, S., Jeschke, G., Günther, D., Grunwaldt, J. D. and Patzke, G. R., Eur. J. Inorg. Chem. 2036 (2010).Google Scholar
15. Zhenyu, L., Guangliang, X. and Yalin, Z., Nanoscale Res Lett 2, 40 (2007).Google Scholar
16. Liu, B., Bando, Y., Dierre, B., Sekiguchi, T., Tang, C., Mitome, M., Wu, A., Jiang, X. and Golberg, D., Nanotechnology 20, 365705 (2009).Google Scholar
17. Jeong, I. K., Park, H. L. and Mho, S. I., Solid State Communications, 108, 823 (1998).Google Scholar
18. Kim, J. S., Kang, H. I., Kim, W. N., Kim, J. I., Choi, J. C., Park, H. L., Kim, G. C., Kim, T. W., Hwang, Y. H., Mho, S. I., Jung, M. C. and Han, M., App. Phy. Lett. 82, 2029 (2003)Google Scholar
19. Pinna, N., Garnweitner, G., Antonietti, M. and Niederberger, M., Adv. Mat. 16, 2196 (2004).Google Scholar
20. Jeong, I. K., Park, H. L. and Mho, S. I., Solid State Communications, 105, 179 (1998).Google Scholar
21. Bae, S. Y., Lee, J., Jung, H., Park, J. and Ahn, J. P., J. Am.Chem. Soc. 127, 10802 (2005).Google Scholar
22. Hu, J., Bando, Y. and Liu, Z., Adv. Mat. 15, 1000 (2003).Google Scholar
23. Duana, X. L., Yuana, D. R., Wanga, L. H., Yua, F. P., Chenga, X. F., Liua, Z. Q. and Yan, S. S., Journal of Crystal Growth 296, 234 (2006).Google Scholar