Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T10:45:34.346Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Si+ and P+ Dually Implanted InP

Published online by Cambridge University Press:  25 February 2011

Shen Honglie
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, China
Yang Genqing
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, China
Zhou Zuyao
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, China
Zou Shichang
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, China
Get access

Abstract

150keV Si* ions and 160keV P* ions were implanted at 200°C with doses ranging from 5x1013 to 1x1015/cm2 to study the effect of dual implantations on the electrical properties of Fe doped InP. Samples encapsulated with Si3N4 films of about 1000Å were annealed in a halogen tungsten lamp RTA system under flowing N2 at different temperatures from 700 to 900°C for 5s. It has been found that Si*+P* dual implantations into InP can result in an enhanced activation, particularly significant at high dose of implantation. The maximum dopant activation and average electron mobility for Si*+P* dual implants at a dose of 1×1015/cm2 are 70% and 750cm2/vs, which corresponds to a peak electron concentration of 5×1019/cm3 while that for Si* single implant at the same dose are 29% and 870cm2/vs, which corresponds to a peak electron concentration of 1.2×10 19/cm3. The improvement of the electrical properties is discussed in terms of amphoteric behavior of silicon in InP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sealy, B.J., Bensalem, R., Patel, K.K., Nuclear Instruments and Methods in Physics Research, B6, 325 (1985).Google Scholar
2 Davies, D.E., Nuclear Instruments and Methods in Physics Research, B7/8. 387 (1985).Google Scholar
3 Gill, S.S. and Sealy, B.T., J. Electrochem. Soc. 133. 2590 (1986).Google Scholar
4 Farley, C.W., Kim, T.S. and Streetman, B.G., J. Electronic Materials, 16, 79 (1987).Google Scholar
5 Reynolds, S., Vook, D.W., Opyd, W.G., and Gibbons, J.F., Appl. Phys. Lett. 51, 916 (1987).Google Scholar
6 Lile, D.L., Collins, D.A., and Zeisse, C.R., IEEE Electron. Dev. Lett. EDL-4, 231 (1983)Google Scholar
7 Liu, S.G., Biby, T., Narayan, S.Y., and Magee, C.W., RCA Rev. 47, 536 (1986).Google Scholar
8 Rao, M.V. and Thomson, P.E., Appl. Phys. Lett. 50, 1444 (1987).Google Scholar
9 Dodabalapur, A., Farley, C.W., Lester, S.D., Kim, T.S., and Streetman, B.G., J. Electron. Mater. 16. 283 (1987).Google Scholar
10 del Alamo, J.A. and Mizutani, T., J. Appl. Phys. 62., 3456 (1987).Google Scholar
11 Farley, C.W. and Streetman, B.G., J. Electrochem. Soc. 134. 498 (1987).Google Scholar
12 Donnelly, J.P. and Fernate, G.A., Solid-state Electron. 23. 1151 (1980).Google Scholar
13 Koning, U., Hilgarth, J., and Tiemann, H.H., J. Electron. Mater. 14, 311 (1985).Google Scholar
14 Tell, B., Brown-Goebeler, K.F. and Cheng, C.L., Appl. Phys. Lett. 52, 299 (1988).Google Scholar
15 Rao, M.V., Keating, M.P., and Thompson, P.E., J. Electronic. Materials. 17, 315 (1988).Google Scholar
16 Davies, D.E., Nally, P.J.M., Lorenzo, J.P., and Julian, M., IEEE Electron. Dev. Lett. EDL-3, 102 (1982).Google Scholar
17 Heckingbottom, R. and Ambridge, T., Red. Effects, 17, 31 (1973)Google Scholar
18 Inada, T., Kato, S., and ohkubo, T., Rad. Effects, 49, 91 (1980).Google Scholar
19 Choudhurg, A.N.M.M. and Armiento, C.A., Appl. Phys. Lett. 50. 448 (1987).Google Scholar
20 Hyuga, F., Yamazaki, H., Watanabe, K., and Osaka, J., Appl. Phys. Lett. 50, 1592 (1987).Google Scholar
21 Wang, Kou-wei, Appl. Phys. Lett. 51, 2127 (1987).Google Scholar
22 Honglie, Shen, Genging, Yang, Zuyao, Zhou, and Shichang, Zou, Semiconductor Science and Technology, 4(11), 1989.Google Scholar
23 Baumann, G.G., Benz, K.W., and Pilkuhn, M.H., J. Electrochem. Soc. 123. 1232 (1976).Google Scholar
24 Pomerenke, G.S., Crystal, J. Growth, 64. 158 (1983).Google Scholar