Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T15:25:12.625Z Has data issue: false hasContentIssue false

Reactive Pulsed Laser Deposition of Microcrystalline Ge-based Thin Films

Published online by Cambridge University Press:  01 February 2011

Matthew R. Wills
Affiliation:
Department of Materials Science and Engineering
Ruth Shinar
Affiliation:
Microelectronics Research Center, Iowa State University, Ames Iowa 50011
Alan P. Constant
Affiliation:
Department of Materials Science and Engineering
Get access

Abstract

Pulsed laser deposition (PLD) was used to grow microcrystalline thin films of germanium (Ge) and Ge-carbon (Ge,C) alloys on fused quartz and silicon substrates at substrate temperatures 25°C ≤ Ts ≤ 325°C. The films were analyzed structurally with x-ray diffraction (XRD), optically, electrically with four-point probe measurements, and chemically with x-ray photoelectron spectroscopy (XPS). XRD results displayed a varying degree of crystallinity, with the most crystalline films obtained at Ts > 150°C. The resistivity of the Ge films decreased with increasing temperature, displaying a significant decrease for the films deposited at Ts ≥ 230°C. The growth conditions for Ge films served as a starting point for low-temperature deposition of Ge,C alloys with up to 5% C. The effects of Ts and carbon concentration on film properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sutter, P., Kafader, U., and Kanel, H., Sol. Energy Mater. Sol. Cells 31, 541 (1994).Google Scholar
2. Lill, M. and Schroder, B., Appl. Phys. Lett. 74, 1284 (1999).Google Scholar
3. Bozzo, S., Lazzari, J.-L., Coudreau, C., Ronda, A., d'Avitaya, F. Arnaud, Derrien, J., Mesters, S., Hollander, B., Gergaud, P., and Thomas, O., J. Cryst. Growth 216, 171 (2000).Google Scholar
4. Amour, A.S., Liu, C., Sturn, J., Lacroix, Y., Thewalt, M., Appl. Phys. Lett. 67, 3915 (1995).Google Scholar
5. Eaglesham, D. J., J. Appl. Phys. 77, 3597 (1995).Google Scholar
6. Mukherjee, C., Seitz, H., and Schroder, B., Appl. Phys. Lett. 77, 3457 (2001).Google Scholar
7. Zhang, Y., Iqbal, Z., Vijayalakshmi, S., Qadri, S., and Grebel, H., Solid State Comm. 115, 657 (2000).Google Scholar
8. Ma, B., Li, M., Koritala, R.E., Fisher, B.L., Dorris, S.E., Maroni, V.A., Miller, D.J., Balachandran, U., Physica C. 377, 501 (2002).Google Scholar
9. Kolodzey, J., Beger, P.R., Orner, B.A., Hits, D., Chen, F., Khan, A., Shao, X., Waite, M.M., Shah, S. Ismat, Swann, C.P., Unruh, K.M., J. Crystal Growth 157, 386 (1995).Google Scholar
10. Todd, M., Kouvetakis, J., Smith, D.J., App. Phys. Lett. 68, 2047 (1996).Google Scholar
11. Yang, B.-K., Krisnamurthy, M., Weber, W.H., J. Appl. Phys. 82, 3287 (1997).Google Scholar
12. Moulder, J., Handbook of XPS, (Perkin Elmer, New York, 1992), p. 95.Google Scholar
13. Herrold, J.T., Dalal, V.K., J. Non-Crys. Sol. 270, 255 (2000).Google Scholar