Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T08:39:09.362Z Has data issue: false hasContentIssue false

Remote Plasma-Enhanced Chemical Vapor Deposition of Epitaxial Silicon on Silicon (100) at 150°C

Published online by Cambridge University Press:  21 February 2011

T. Hsu
Affiliation:
Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78712
B. Anthony
Affiliation:
Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78712
L. Breaux
Affiliation:
Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78712
S. Banerjee
Affiliation:
Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78712
A. Tasch
Affiliation:
Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78712
Get access

Abstract

Low temperature processing will be an essential requirement for the device sizes, structures, and materials being considered for future integrated circuit applications. In particular, low temperature silicon epitaxy will be required for new devices and technologies utilizing three-dimensional epitaxial structures and silicon-based heterostructures. A novel technique, Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD), has achieved epitaxial silicon films at a temperature as low as 150°C which is believed to be the lowest temperature to date for silicon epitaxy. The process relies on a stringent ex-situ preparation procedure, a controlled wafer loading sequence, and an in-situ remote hydrogen plasma clean of the sample surface, all of which provide a surface free of carbon, oxygen, and other contaminants. The system is constructed using ultra-high vacuum technology (10-10 Torr) to achieve and maintain contaminantion-free surfaces and films. Plasma excitation of argon is used in lieu of thermal energy to provide energetic species that dissociate silane and affect surface chemical processes. Excellent crystallinity is observed from the thin films grown at 150°C using the analytical techniques of Transmission Electron Microscopy (TEM) and Nomarski interference contrast microscopy after defect etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Srinivasan, G.R. and Meyerson, B.S., J. of the Electrochem. Soc., 134(6), 1518(1987).Google Scholar
2. Meyerson, B.S., Appl. Phys. Lett., 48, 797(1986).Google Scholar
3. Ota, Y., Thin Solid Films, 106, 3136(1983).Google Scholar
4. Hirayama, H., Tatsumi, T., Ogura, A., and Aizaki, N., Appl. Phys. Lett., 51(26), 2213(1987); H. Hirayama, T. Tatsumi, and N Aizaki, Appl. Phys. Lett., 52(18), 1484(1988).Google Scholar
5. Donahue, T. and Reif, R., J. Appl. Phys., 57(8), 2757(1985); J. Comfort and R. Reif, Appl. Phys. Lett., 51(24), 2016(1987).Google Scholar
6. Ohmi, r., Matsudo, K., Shibata, T., Ichikawa, T., and Iwabuchi, H., Appl. Phys. Lett., 53(5), 364(1988); Appl. Phys. Lett., 53(1), 45(1988).Google Scholar
7. Richard, P., Markunas, R., Lucovsky, G., Fountain, G., Mansour, A., and Tsu, D., J. Vac. Sci. Technol., A3, 867(1985).Google Scholar
8. Breaux, L., Anthony, B., Hsu, T., Banerjee, S., and Tasch, A. in Proceedings of the 1989 Industry-University Advanced Materials Conference, edited by Smith, Fred W. (Advanced Materials Institute, Golden, CO), pgs 47–58.Google Scholar
9. Kern, W., Semiconductor International, April, 1984, pg. 94–98.Google Scholar
10. Anthony, B., Breaux, L., Hsu, T., Banerjee, S., and Tasch, A., J. Vac. Sci. Technol., B7(4), 621(1989).Google Scholar
11. Kunitsugu, Y., Suemune, I., Tanaka, Y., Kan, Y., and Yamanishi, M., J. Crystal Growth, 95, 91(1989).Google Scholar
12. Hsu, T., Breaux, L., Anthony, B., Banerjee, S., and Tasch, A. in Rapid Thermal Annealing/Chemical Vapor Deposition and Inte gated Processing, edited by Siedel, T., Gelpey, J., Hodul, D., and Green, M.L. (Mater. Res. Soc. Proc. 146, Pittsburgh, PA, 1989), pgs 161167.Google Scholar
13. Chabal, Y.J. and Raghavachari, K., Phys. Rev. Lett., 54(10), 1055(1985).Google Scholar
14. Hsu, T., Breaux, L., Anthony, B., Banerjee, S., and Tasch, A., J. Electronic Materials, accepted for publication.Google Scholar
15. Archer, V.P., J. Electrochem. Soc., 129, 2074(1982).Google Scholar
16. Jeng, S.J., Oehrlein, G.S., and Scilla, G.J., Appl. Phys. Lett., 53(18), 1735(1988).Google Scholar