Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T04:00:30.808Z Has data issue: false hasContentIssue false

A Review of the Aqueous Chemistry of the Zirconium - Water System to 200°C

Published online by Cambridge University Press:  10 February 2011

James.H. Adair
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, jadair@eng.ufl.edu
Henrik G. Krarup
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, jadair@eng.ufl.edu
Sridhar Venigalla
Affiliation:
Cabot Performance Materials, Boyertown, PA 19512
Takayuki Tsukada
Affiliation:
Japan Energy Corp., Niizo-Minami 3-17-35, Toda, Saitama 335, Japan
Get access

Abstract

The aqueous chemistry of the Zr-H2O system is reviewed. It is shown that the thermodynamically stable solid phase for the Zr-H2O system at 25°C is the monoclinic phase. After a review of the chemistry of the pure material in water, a summary of the solution equilibria of the Zr-H2O system is presented followed by a discussion of the aqueous phase stability of the monoclinic and tetragonal phases of the pure ZrO2 system. Last, a discussion of the phase stability of the complex metal oxides, particularly the Y2O3-containing TZP in aqueous solution will be reviewed. It will be shown that the phase stability for the complex metal oxide-zirconia systems may be best understood as corrosion with the alloying agent (e.g., Y2O3) subject to leaching from a zirconia-rich interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bacs, C. F. J., Mesmer, R. E., The Hydrolysis of Cations (John Wiley & Sons, New York, London, Sydney, Toronto, 1976). See also N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, Ltd., Oxford, England, p. 1126, 1995.Google Scholar
2. Barnum, D.W., Inorg. Chem. 22, 2297 (1983).Google Scholar
3. Adair, J. H., Denkewicz, R. P., Arriagada, F. J., Osseo-Asare, K., Ceram. Trans. 1, 135 (1988).Google Scholar
4. Green, D.J., Hannink, R.H.J., Swain, M. V., Transformation Toughening of Ceramics (CRC Press, Inc., Boca Raton, FL, 1989).Google Scholar
5. Muha, G.M., Vaughan, P. A., J. Chem. Phys. 33 194 (1960).Google Scholar
6. Baes, C.F.J., Mesmer, R.E., Am. J. Sci. 281 935 (1981).Google Scholar
7. Tsukada, T., M.S. Thesis, University of Florida, Gainesville, 1993.Google Scholar
8. Tsukada, T., Venigalla, S.. and Adair, J.H., Ceram. Trans. 54, 123 (1995).Google Scholar
9. Garvie, R.C., J.Phys.Chem.82[2], 218 (1978).Google Scholar
10. Adair, J.H., Denkewicz, R. P. Jr., Ceram. Trans. 12, 135 (1990).Google Scholar
11. Denkewicz, R.P. Jr., TenHuisen, K.S., Adair, J.H., J. Mater. Res. 5, 2698 (1990).Google Scholar
12. Pourbaix, M. (ed.) Atlas of Electrochemical Equilibria in Aqueous Solution (N.A.C.E., Houston, TX., 1974).Google Scholar
13. Yoshimura, M., Noma, T., Kawabata, K., Somiya, S., J. Mater. Sci. Lett., 6, 465 (1987).Google Scholar
14. Sato, T. and Shimada, M., J. Am. Ceram. Soc., 68, 356 (1985).Google Scholar
15. Lange, F.F., Dunlop, G.L.. and Davis, B.I., J. Am. Ceram. Soc., 69[3], 237 (1986).Google Scholar