Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T22:09:20.581Z Has data issue: false hasContentIssue false

Rocking-Angle Ion-Milling of Cross-Sectional Samples for Transmission Electron Microscopy of Multi-Layer Systems

Published online by Cambridge University Press:  10 February 2011

Jeong Soo Lee
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137-140, Korea
Hyun Ha Kim
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137-140, Korea
Young Woo Jeong
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137-140, Korea
Get access

Abstract

The cross-sectional transmission electron microscopy (TEM) specimens of Pt/Ti/SiO2/Si, RuO2/SiO2/Si, W/TiN/SiO2/Si, (Pb,La)TiO3/Pt/MgO, Bi4Ti3O12/Lal-xCaxMnO3/MgO, and GaN/Al2O3 were successfully made by the rocking-angle ion-milling technique. The differential thinning problems could be effectively mitigated when the rocking-angle and the ion-beam incidence angle were optimized for each heterostructure. It was found that the sputtering yield ratio between the layer milled most quickly and the layer milled most slowly is one of the important factors which determine the optimum rocking-angle ion-milling condition. The atomic force microscopy study on the surface topography of the cross-sectional Pt/Ti/SiO2/Si TEM sample after ion-milling provided quantitative information about the effects of the rocking-angle variation. A parameter which is the ratio between the layer with a minimum electron transparency and the layer with a maximum electron transparency was suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bravman, J. C. and Sinclair, R., J. Electr. Microsc. Tech. 1, 53 (1984).Google Scholar
2. Chang, P. H., Coviello, M. D., and Scott, A. F., Mater. Res. Soc. Symp. Proc. 115, 93 (1988).Google Scholar
3. Alani, R. and Swann, P. R., Mater. Res. Soc. Symp. Proc. 199, 85 (1990).Google Scholar
4. Shaapur, F. and Watson, K. A., Mater. Res. Soc. Symp. Proc. 254, 153 (1992).Google Scholar
5. Lee, J. S., Jeong, Y. W., and Kim, S. T., Microsc. Res. and Tech. 33, 490 (1996).Google Scholar
6. Park, K. H., Kim, C. Y., Jeong, Y. W., Kwon, H. J., Kim, K. Y., Lee, J. S., and Kim, S. T., J. Mater. Res. 10, 1790 (1995).Google Scholar
7. Lee, J. S., Kwon, H. J., Jeong, Y. W., Kim, H. H., and Kim, C. Y., J. Mater. Res. 11, 2681 (1996).Google Scholar
8. Raaijmakers, I. J., Setvalvad, T., Bhansali, A. S., Burrow, B. J., Gutai, L., and Kim, K. B., J. Elec. Mater. 19, 1221 (1990).Google Scholar
9. Lee, D. H., Lee, J. S., Cho, S. M., Nam, H. J., Lee, J. H., Choi, J. R., Kim, K. Y., Kim, S. T., and Okuyama, M., Jpn. J. Appl. Phys. 34, 2453 (1995).Google Scholar
10. Jo, W. and Noh, T. W., Mater. Res. Soc. Symp. Proc. 361, 27 (1995).Google Scholar
11. Gu, J. Y., Kim, K. H., Noh, T. W., Lee, J. S., Jeong, Y. W., and Jo, W., Mater. Res. Soc. Symp. Proc. 401, 461 (1996).Google Scholar
12. Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 80, 3228 (1996).Google Scholar
13. Behrisch, R., Sputtering by Particle Bombardment 1, Springer-Verlag, Berlin, 1981, p. 338 Google Scholar