Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:02:29.601Z Has data issue: false hasContentIssue false

The Role of the Lattice Step in Epitaxial Growth

Published online by Cambridge University Press:  10 February 2011

Tsu-Yi Fu
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan, ROC.phtifu@sinica.edu.tw
Tien T. Tsong
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan, ROC.
Get access

Abstract

Solid surfaces have many lattice steps. In epitaxy, aggregation of deposited atoms into islands or clusters during their diffusing can create many additional atomic steps. We study the effects of lattice steps on epitaxial growth in two aspects: 1. Movement of atoms across the step edge: a series of field ion microscope experiments reveal the importance of reflective and trapping properties of steps, and provide quantitative information that helps explain various growth modes observed in homoepitaxial growth. 2. Diffusion along the step edge: a number of field ion microscope experiments are done to determine diffusion parameters of a ledge atom along the step edge, and to derive the potential-energy diagram along different diffusion paths that helps explain the growth morphology. During growth, an atom undergoes a number of elementary atomic processes. Each process is characterized by a few energy parameters in bonding and diffusion. The integrated effect of all of these processes determines the growth process. We provide reliable experimental data and find the temperature ranges where various atomic processes are important

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brune, H., Surf. Sci. Rep., 31, 121 (1998).Google Scholar
2. Kellogg, G. L., Surface Sci. Rept. 21, 1 (1994); T. T. Tsong, Rept Prog. Phys. 51, 759 (1988).Google Scholar
3. Bauer, E., Z. Kristallogr. 110, 372 (1958); Also see for example also A. Zangwill, Physics at Surfaces, Cambridge UNIV.PRESS, New York (1988), p 428.Google Scholar
4. Brune, H., Romainczyk, C., Roder, H., Kern, K., Nature, 369,469 (1994), H. Roder, K. Bromann, H. Brune, K. Kern, Phys. Rev. Lett. 74, 3217 (1995), M. Hohage, M. Bott, M. Morgenstern, Z. Zhang, T. Michely, and G. Comsa, Phys. Rev. Lett. 76,2366 (1996).Google Scholar
5. Chen, C. L. and Tsong, T. T., Phys. Rev.B 47, 15856 (1993).Google Scholar
6. Fu, T. Y., Tzeng, Y. R. and Tsong, T. T., Phys. Rev. Lett. 76, 2539 (1996).Google Scholar
7. Fu, T. Y., Wu, H. T. and Tsong, T. T., Phys. Rev. B. 58,2340 (1998).Google Scholar
8. Fu, T. Y., Tzeng, Y. R. and Tsong, T. T., Phys. Rev.B 54, 5932 (1996).Google Scholar
9. Burton, W. K., Cabrera, N. and Frank, F. C., Phil. Trans. Roy. Soc. A 243, 299 (1951).Google Scholar
10. Schwoebel, R. L., and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
11. Hwang, R. Q., Schroder, J., Gunther, C., and Behm, R. J., Phys. Rev. Lett. 67, 3279 (1991).Google Scholar
12. Kellogg, G. L., Surf. Sci. 359,237 (1996).Google Scholar
13. Kopatzki, E., Gunther, S., Nichtl-Pecher, W. and Behm, R. J., Surf. Sci. 284, 154 (1993).Google Scholar
14. Zhang, Z., Chen, X. and Lagally, M. G., Phys. Rev. Lett. 73, 1829 (1994).Google Scholar
15. Fu, T. Y., Tzeng, Y. R. and Tsong, T. T., Surf. Sci., 366, L691 (1996).Google Scholar
16. Hohage, M., Morgenstern, M., Zhang, Z., Michely, T., and Comsa, G., Phys. Rev. Lett. 76 (1996) 2366.Google Scholar
17. Rder, H., Bromann, K., Brune, H., and Kern, K., Phys. Rev. Lett. 74, 3217 (1995), G. S. Bales, D. C. Chrzan, Phys. Rev. Lett. 74,4879 (1995).Google Scholar
18. Brune, H., Bromann, K., Jacobsen, J., Jacobsen, K., Stoltze, P., Nøirskov, J., and Kern, K., Surf. Sci., 349, L115 (1996).Google Scholar
19. Hohage, M., Bott, M., Morgenstern, M., Zhang, Z., Michely, T., and Comsa, G., Phys. Rev. Lett. 76, 2366 (1996).Google Scholar