Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T09:29:45.658Z Has data issue: false hasContentIssue false

Selective Deposition of Polycrystalline Silicon Thin Films by Hot-Wire CVD

Published online by Cambridge University Press:  15 February 2011

Shuangying Yu
Affiliation:
Center for Display Technology and Manufacturing Department of Chemical Engineering
Erdogan Gulari
Affiliation:
Center for Display Technology and Manufacturing Department of Chemical Engineering
Jerzy Kanicki
Affiliation:
Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Polycrystalline silicon thin films have been selectively deposited at a deposition rate of 60–100Å/min and a substrate temperature of 300°C on molybdenum or silicon over silicon dioxide, silicon nitride or Coming 7059 glass substrate in a continuous hot-wire CVD process involving hydrogen and disilane. Excellent selectivity is achieved on features as small as one micrometer spaced molybdenum lines. The crystallinity of the selectively deposited polysilicon films is thickness dependent. The substrate selectivity is sensitive to both silicon content in the gas phase and substrate temperature. Selective deposition shifts to lower Si content in the gas phase when substrate temperature increases. At a certain substrate temperature, for a silicon content above a certain value in the gas phase, films with similar crystallinity are non-selectively deposited on both molybdenum and silicon dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parsons, G. N., IEEE Electron Device Lett. 13, 80 (1992).Google Scholar
2. Parsons, G. N., Appl. Phys. Lett. 59, 2546 (1991).Google Scholar
3. Westlake, W., and Heintze, M., J. Appl. Phys. 77, 879 (1995).Google Scholar
4. Baert, K., Deschepper, P., Nijs, J., and Mertens, R., Mater. Res. Soc. Symp. Proc. 164, 395 (1989).Google Scholar
5. Mahan, A. H., Carapella, J., Nelson, B. P., and Crandall, R. S., J. Appl. Phys. 69, 6728 (1991).Google Scholar
6. Deshpande, S. V., Dupuie, J. L., and Gulari, E., Appl. Phys. Lett. 61, 1420 (1992).Google Scholar
7. Dupuie, J. L., and Gulari, E., J. Vac. Sci. Technol. A 10, 18 (1992).Google Scholar
8. Yu, S., Deshpande, S. V., Gulari, E., and Kanicki, J., Mater. Res. Soc. Symp. Proc. 377, 69 (1995).Google Scholar
9. Matsumura, H., Tashiro, Y., Sasaki, K., and Furukawa, S., Jpn. J. Appl. Phys. 33, L1209 (1994).Google Scholar
10. Jansen, F., Chen, I., and Machonkin, M. A., J. Appl. Phys. 66, 5749 (1989).Google Scholar
11. Horbach, C., Beyer, W., and Wagner, H., J. Non-Cryst. Solids, 137&138, 661 (1991).Google Scholar
12. Yu, S., Gulari, E., and Kanicki, J., submitted to Appl. Phys. Lett.Google Scholar
13. Wakagi, M., Kaneko, T., Ogata, K., and Nakano, A., Mater. Res. Soc. Symp. Proc. 283, 555 (1993).Google Scholar
14. Cabarrocas, P. Roca i, Layadi, N., Heitz, T., and Drevillon, B., Appl. Phys. Lett. 66, 3609 (1995).Google Scholar
15. Boland, J. J., and Parsons, G. N., Science, 256, 1304 (1992).Google Scholar