Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T02:20:57.079Z Has data issue: false hasContentIssue false

Silicides for Infrared Applications

Published online by Cambridge University Press:  03 September 2012

Paul W. Pellegrini*
Affiliation:
Rome Laboratory, Electromagnetic Devices Technology Division, Hanscom AFB, MA 01731-2909
Get access

Abstract

This paper discusses the attributes of metal silicides as they are applied to detection of infrared photons. These materials have a long history in the silicon community as interconnects and are easily integrated into manufacturing. The technology is currently only sensitive to 10 μm in the infrared. New results obtained from silicon germanium alloys are discussed that will help overcome these spectral limitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shepherd, F. D. and Yang, A. C., “Silicon Schottky Retinas for Infrared Imaging”, in Proceedings of the International Electron Devices Meeting, pp. 310313, (1973).Google Scholar
2. Kosonocky, W. F., Shallcross, F. V., Villani, T. S., and Groppe, J. V., “160 × 244 Element PtSi Schottky-Barrier IR-CCD Image Sensor”, IEEE Transactions on Electron Devices, Vol. ED–32, No. 8, pp. 15641573, (1985).Google Scholar
3. Sauer, D. J., Shalcross, F. V., Hsueh, F. L., Meray, G. M., Levine, P. A., Gilmartin, H. R., Vilani, T. S., Esposito, B. J. and Tower, J. R., “640 × 480 MOS PtSi IR Sensor”, Proceeding of SPIE, Vol. 1540, Infrared Technology XVII, Ed. Andersen, Spiro and Scholl, , pp. 285296, (1991).Google Scholar
4. Gates, J. L., Connelly, W. G., Franklin, T. D., Mills, R. E., Price, F. W. and Wittwer, T. Y., “488 × 640-Element Platinum Silicide Schottky Focal Plane Array”, Ibid.Google Scholar
5. Clark, D. L., Berry, J. R., Compagna, G. L., Cosgrove, M. A., Furman, G. G., Heydweiller, J. R., Honickman, H., Rehberg, R. A., Solie, P. H. and Nelson, E. T., “Design and Performance of a 486 × 640 Pixel Platinum Silicide IR imaging System”, Ibid.Google Scholar
6. Kimata, M., Yutani, N., Tsubouchi, S. N., “High Performance 1040 × 1040 Element PtSi Schottky-barrier Image Sensor”, Proceedings of SPIE, Vol 1762, Infrared Technology XVIII, Ed. Andersen, and Shepherd, , 1992.Google Scholar
7. Michaelson, H. B., “The work function of the elements and its periodicity”, J. Appl. Phys., 48(11), 4729–4723, (1977)CrossRefGoogle Scholar
8. Ghozlene, H. B. and Beaufrbre, P., Crystallography of PtSi films on (001) silicon”, J. Appl. Phys., 49(7), pp. 39984004, (1978).Google Scholar
9. Pellegrini, P. W., Golubovic, A., Ludington, C. E., Weeks, M. M., “IrSi Schottky Barrier Diodes for Infrared Detection”, Technical Digest of the International Electron Devices Meeting, pp. 157159, Dec. 1982.Google Scholar
10. Nicolet, M. A. and Lau, S. S., in VLSI Electronics: Microstructure Sciences, Vol. 6, Chapter 6, Academic Press, NY, pp. 410411.Google Scholar
11. Sze, S. M., Physics of Semiconductor Devices, 2nd. Edition, Wiley Interscience, New York, Chapter 5, 1981.Google Scholar
12. Mooney, J. M., “Investigation af the process of internal photoemission in PtSi Schottky barrier diodes”, PhD. Dissertation, University of Arizona, 1986.Google Scholar
13. Cohen, J., Vilms, J., Archer, R. J., “Investigation of Semiconductor Schottky Barriers for Optical Detection and Cathodic Emission”, Final Report AFCRL-68-0651, DTIC No. AD-682522, 1968.Google Scholar
14. Meyerson, B. S., “UHV/CVD Growth of Si and SiGe Alloys: Chemistry, Physics and Device Applications”, Proc. of the IEEE, Vol. 80, No.10, pp. 15921608, 1992.Google Scholar
15. Bean, J. C., “Silicon-Based Semiconductor Heterostructures: Column IV Bandgap Engineering”, Proc. of the IEEE, Vol. 80, No. 4, pp. 569587, 1992.Google Scholar
16. Lin, T. L. and Maserjian, J., “Novel Si(1-x)Gex heterojunction internal photoemission longwavelength infrared detectors”, APL, 57(14), pp. 14221424, 1990.Google Scholar
17. People, R., Bean, J. C., Bethea, C. G., Sputz, S. K. and Peticolas, L. J., “Broadband (8-14μm), normal incidence, pseudomorphic GexSi(1-x)strained-layer infrared photodetector operating between 20 and 77 K”, APL, 61(9), pp. 11221124, 1992.Google Scholar