Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T07:29:17.270Z Has data issue: false hasContentIssue false

Silicon Nanowire: a New Shape of Crystalline Silicon

Published online by Cambridge University Press:  10 February 2011

Y.F. Zhang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Y.H. Tang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
N. Wang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
C. S. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
D.P. Yu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
I. Bello
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
S.T. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

Silicon nanowires have been synthesized by using a high-temperature laser ablation method. Transmission electron microscopic investigation shows that the nanowires are crystalline Si, and have diameters ranging from 3 to 43 nm and lengths up to a few hundreds μm. Raman scattering spectrum shows an asymmetric peak at the same position as that of bulk crystalline silicon. The x-ray diffraction revealed an important contribution from surface oxide. This is due to the high surface-to-volume ratio. Visible photoluminescence (PL) was observed in nanowires with sub-5 nm diameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, S., Nature, 354, 56 (1991).Google Scholar
2 Saito, Y., Okuda, M., Tomita, M., Hayashi, T., Chem. Phys. Lett., 236, 419 (1995).Google Scholar
3 Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. and Dekker, C., Nature, 391, 59 (1998).Google Scholar
4 Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M., Nature, 391, 62 (1998).Google Scholar
5 Yorikawa, H., Uchida, H., and Muramatsu, S., J. Appl. Phys., 79, 3619 (1996).Google Scholar
6 Shen, M. Y. and Zhang, S. L., Physics Letters A, 176, 154 (1993).Google Scholar
7 Needs, R. J., Bhattacharjee, S., Nash, K. J., Qteish, A.. Read, A. J. and Canham, L. T., Physcal Review B, 50, 14233 (1994).Google Scholar
8 Klimovskaya, A. I., Ostrovakii, I. P., and Ostrovskaya, A. S., Phys. Stat. Sol., 153, 465 (1996).Google Scholar
9 Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sci. Technol. B, 15, 554 (1997).Google Scholar
10 Ono, T., Saitoh, H., and Esashi, M., Appl. Phys. Lett., 70, 1852 (1997).Google Scholar
11 Morales, A.M. and Lieber, C.M., Science, 279, 208 (1998).Google Scholar
12 Zhang, Y., Li, G., Lee, C. S., and Lee, S. T., J. Crystal Growth, 182, 337 (1997).Google Scholar
13 Wang, N., Tang, Y.H., Zhang, Y.F., Yu, D.P., Lee, C. S., Bello, I., and Lee, S.T., Chem. Phys. Letter, 283, 368 (1998).Google Scholar
14 Zhang, Y.F., Tang, Y.H., Wang, N., Lee, C. S., Yu, D.P., Bello, I., and Lee, S.T., Appl. Phys. Lett. 72, 1835 (1998).Google Scholar
15 Camplbel, I.H. and Fauchet, P.M., Solid State Comm., 58, 739 (1984).Google Scholar
16 Nolsson, G. and Nelin, G., Phys. Rev. B, 6, 3777 (1972).Google Scholar
17 Cullis, A.G. and Canham, L.T., Nature, 353, 335 (1991).Google Scholar
18 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
19 Okada, R. and Lijima, S., Appl, Phys. Lett. 58, 1662 (1991).Google Scholar