Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T11:26:50.926Z Has data issue: false hasContentIssue false

Silver nanowires: synthesis, characterization and optical properties

Published online by Cambridge University Press:  01 February 2011

Yuri A. Barnakov
Affiliation:
ybarnakov@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Heng Li
Affiliation:
h.li@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Guohua Zhu
Affiliation:
gzhu@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Mohammed Mayy
Affiliation:
m.mayy@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Erik J. Robinson
Affiliation:
e.j.robinson@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Carl Bonner
Affiliation:
cebonner@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Mikhail A. Noginov
Affiliation:
mnoginov@nsu.edu, Norfolk State University, Center for Materials Research, Norfolk, Virginia, United States
Get access

Abstract

We describe electrochemical synthesis of a bulk metamaterial, consisting of silver nanowires in Porous Anodic Alumina membrane and its characterization. We have found that the quality of the synthesized metamaterial depends on the metal used as a working electrode at the optimal conditions of the electroplating process. The dissolution of the thin layer of working electrode is occurred during the electrochemical reaction. It suggests an important role of interfacial phenomena taking place between the working electrode and the sample holder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pendry, J. B., Phys. Rev. Lett. 85, 3966 (2000).Google Scholar
2. Veselago, V., Braginsky, L., Shklover, V., Hafner, C., J. of Comput. and Theor. Nanoscience, 3, 1, (2006).Google Scholar
3. Yao, J., Liu, Z., Liu, Y., Wang, Y., Sun, C., Bartal, G., Stacy, A. M., Zhang, X., Science, 321, 930 (2008).Google Scholar
4. Pendry, J. B., Phys. Rev. Lett., 85, 3966 (2000).Google Scholar
5. Xiong, Y., Sun, C., Liu, Z., Lee, H., Zhang, X., Science, 315, 1686 (2007).Google Scholar
6. Cai, W., Chettiar, U. K., Kildishev, A. V., Shalaev, V. M., Nature Photonics, 1, 224 (2007).Google Scholar
7. Shelby, R. A., Smith, D. R., Schultz, S., Science, 292, 77 (2001).Google Scholar
8. Podolskiy, V. A., Sarychev, A. K., Shalaev, V. M., Nonlinear., J. Opt. Phys. Mater., 11, 65 (2002).Google Scholar
9. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M., Linden, S., Opt. Lett., 31, 1800 (2006).Google Scholar
10. Noginov, M. A., Barnakov, Yu. A., Zhu, G., Tumkur, T., Li, H., Narimanov, E., Bulk photonic metamaterial with hyperbolic dispersion, http://archiv.org/abs/0809.1028, (2008).Google Scholar
11. Piraux, L., George, J. M., Depress, J. F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., Fert, A., Appl. Phys. Lett., 65, 2484 (1994).Google Scholar
12. Routkevich, D., Bigioni, T., Moskovits, M. and Xu, J. M., J. Phys. Chem. 100, 14037 (1996).Google Scholar
13. Bhahacharrya, S., Saha, S. K. and Chakravorty, D., Appl. Phys. Lett., 76, 3896 (2000).Google Scholar
14. Hornyak, G. L., Patrissi, C. J. and Martin, C. R., J. Phys. Chem. B, 101, 1548 (1997).Google Scholar
15. Blondel, A., Meier, J. P., Doudin, B. and Ansermet, J. P., Appl. Phys. Lett., 65, 3019 (1994).Google Scholar