Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T07:41:40.880Z Has data issue: false hasContentIssue false

Simulation of DC Characteristics of Nano-Scale Hydrogen-Terminated Diamond MISFETs

Published online by Cambridge University Press:  28 August 2013

Xi Zhou
Affiliation:
Department of Engineering, Norfolk State University Norfolk, VA 23504, U.S.A.
Frances Williams
Affiliation:
Department of Engineering, Norfolk State University Norfolk, VA 23504, U.S.A.
Sacharia Albin
Affiliation:
Department of Engineering, Norfolk State University Norfolk, VA 23504, U.S.A.
Get access

Abstract

An improved 2D device model is generated to simulate the DC properties of hydrogen- terminated diamond MISFETs by taking into account the effect of electric field on hole mobility. At high lateral field, the mobility degrades due to velocity saturation and at high transverse field, the mobility decreases because of strong surface phonon scattering. As either field increases to a certain level (∼ 1MV/cm), the mobility becomes independent of doping concentration and the maximum transverse field appears at the boundary between surface acceptor region and bulk. The threshold voltage is found to be a strong function of gate length and can change from negative to positive, which will change the operation mode of the device. In addition, the simulation also shows that the transconductance reaches a maximum value at 80nm gate length but decreases after further shrinkage, which might be also related to the velocity saturation effect induced by large lateral field.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kawarada, H., Surf. Sci. Rep. 26, 205 (1996).CrossRefGoogle Scholar
Moran, D., Fox, O., Mclelland, H., Russell, S. and May, P., IEEE Electr. Device L. 32, 599 (2011).CrossRefGoogle Scholar
Kasu, M., Ueda, K., Ye, H., Yamauchi, Y., Sasaki, S., Makimoto, T., Diam. Relat. Mater. 15, 783 (2006).CrossRefGoogle Scholar
Denisenko, A., Aleksov, A., Pribil, A., Gluche, P., Ebert, W., Kohn, E., Diam. Relat. Mater. 9, 1138 (2000).CrossRefGoogle Scholar
Maier, F., Riedel, M., Mantel, B., Ristein, J., and Ley, L., Phys. Rev. L. 85, 3472 (2000).CrossRefGoogle Scholar
Hirama, K., Sato, H., Harada, Y., Yamamoto, H., and Kasu, M., IEEE Electr. Device L. 33, 1111 (2012).CrossRefGoogle Scholar
Kueck, D., Schmidt, A., Denisenko, A., Kohn, E., Diam. Relat. Mater. 19, 166 (2010).CrossRefGoogle Scholar
Kawarada, H., Jpn. J. Appl. Phys. 51, 090111–1 (2012).CrossRefGoogle Scholar
Tsugawa, K., Umezawa, H. and Kawarada, H., Jpn. J. Appl. Phys. 40, 3101 (2001).CrossRefGoogle Scholar
Kasu, M., Ueda, K., Kageshima, H., Yamauchi, Y., Diam. Relat. Mater. 17, 741 (2008).CrossRefGoogle Scholar
Sze, S. M., Ng, Kwok K., “Physics of Semiconductor Devices”, Third edition, (John Wiley&Sons, Inc, Hoboken, NJ, 2007) pp. 6268.Google Scholar
Lӧfas, H., Grigoriev, A., Isberg, J., and Ahuja, R., AIP Advances, 1, 032139 (2011).CrossRefGoogle Scholar
Diederich, L., Kuttel, O. M., Aebi, P., Schlapbach, L., Surf. Sci, 418, 219 (1998).CrossRefGoogle Scholar
Reggiani, L., Bosi, S., Canali, C., Nava, F. and Kozlov, , Solid State Commun. 30, 333 (1979).CrossRefGoogle Scholar
Caughey, D. M. and Thomas, R. E., Proc. IEEE, 55, 2192 (1967).CrossRefGoogle Scholar
Rashid, S. J., Tajani, A., Twitchen, D. J., Coulbeck, L., Udrea, F., Butler, T., Rupesinghe, N. L., Brezeanu, M., Isberg, J., Garraway, A., Dixon, M., Balmer, R. S., Chamund, D., Taylor, P., and Amaratunga, G. A. J., IEEE T. Electron Dev. 55, 2744 (2008).CrossRefGoogle Scholar
Canali, C., Majni, G., Minder, R., and Ottaviani, G., IEEE T. Electron Dev. ED-22, 1045 (1975).CrossRefGoogle Scholar
Lombardi, C., Manzini, S., Saporito, A., and Vanzi, M., IEEE T. Comput. Aid. D. 7, 1164 (1988).CrossRefGoogle Scholar