Skip to main content Accessibility help
×
Home

Simulations of Filled Polymers on Multiple Length Scales

  • Francis W. Starr (a1) and Sharon C. Glotzer (a1)

Abstract

We present simulation results of the effect of nanoscopic and micron-sized fillers on the structure, dynamics and mechanical properties of polymer melts and blends. At the smallest length scales, we use molecular dynamics simulations to study the effect of a single nano-filler on the structure and dynamics of the surrounding melt. We find a tendency for polymer chains to be elongated and flattened near the filler surface. Additionally, the simulations show that the dynamics of the polymers can be dramatically altered by the choice of polymer-filler interactions. We use time-dependent Ginzburg-Landau simulations to model the mesoscale phase-separation of an ultra-thin blend film in the presence of an immobilized filler particle. These simulations show the influence of filler particles on the mesoscale blend structure when one component of the blend preferentially wets the filler. Finally, we present some preliminary finite element calculations used to predict the effect of mesoscale structure on macroscopic ultrathin film mechanical properties.

Copyright

References

Hide All
1. Wypych, G., Handbook of Fillers (ChemTec Publishing, 1999).
2. Roco, M.C., Williams, S., and Alivisatos, P. (Eds.), Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology in the Next Decade (Kluwer Academic Publishers, 2000).
3. Giannelis, E.P., Adv. Mater. 8, 29 (1996).
4. Schwab, J.J. and Lichtenhan, J.D., Appl. Organomet. Chem. 12, 707(1998).
5. Feher, F.J., Soulivong, D., Eklund, A.G., and Wyndham, K.D., Chem. Commun. 13, 1185 (1997).
6. Allen, M.P. and Tildesley, D.J., Computer simulation of liquids (Oxford, 1987).
7. Starr, F.W., Schrθder, T.B., and Glotzer, S.C., cond-mat/0007486. (2000).
8. Glotzer, S.C., Ann. Rev. in Comp. Phys. 2, 1 (1995).
9. Lee, B.P., Douglas, J.F., Glotzer, S.C., Phys. Rev. E 60, 5812 (1999).
10. Reddy, J.N., An introduction to the finite element method (Mc-Graw-Hill, 1993).
11. Glotzer, S.C., Han, C., and Fuller, E., unpublished.
12. Glotzer, S.C. and Cummings, P.T., unpublished.
13. Lin, E.K., Kolb, R., Satija, S.K., and Wu, W.L., Macromolecules 32, 3753 (1999).
14. Cousin, P. and Smith, P., J. Poly. Sci. B: Poly. Phys. 32, 459. (1994).
15. Tsagaropoulos, G. and Eisenberg, A., Macromolecules 28, 6067 (1995).
16. Sombatsompop, N., J. Appl. Poly. Sci. 74, 1129 (1999).
17. Forrest, J.A. and Jones, R.A.L., in Polymer surfaces, interfaces, and thin films, eds. Karim, A. and Kumar, S. (World Scientific, 2000) pp. 251294.
18. Jones, R.L., Kumar, S.K., Ho, D.L., Briber, R.M., and Russell, T.P., Nature 400, 146 (2000).
19. Kraus, J., Müller-Buschbaum, P., Kuhlmann, T., Schubert, D.W., and Stamm, M., Europhys. Lett. 49, 210 (2000).
20. Kumar, S.K., Vacatello, M., and Yoon, D.Y., J. Chem. Phys. 89, 5206 (1989); Macromolecules 23, 2189 (1990).
21. Wang, J.-S. and Binder, K., J. Phys. I France 1, 1583 (1991).
22. Wallace, W.E., van, J.H. Zanten, Wu, W.L., Phys. Rev. E 52, 3329 (1995).
23. van, J.H. Zanten, Wallace, W.E., Wu, W.L., Phys. Rev. E 53, 2053 (1996).
24. Forrest, J.A., Dalnoki, K.-Veress, and Dutcher, J.R., Phys. Rev. E 56, 5705 (1997).
25. Forrest, J.A., Svanberg, C., Revesz, K., Rodahl, M., Torell, L.M., Kasemo, B., Phys. Rev. E 58, 1226 (1998).
26. Anastasiadis, S.H., Karatasos, K., Vlachos, G., Manias, E., and Giannelis, E.P., Phys. Rev. Lett. 84, 915 (2000).
27. Bird, R.B., Curtiss, C.F., Armstrong, R.C., and Hassager, O., Dynamics of Polymeric Liquids: Kinetic Theory, Vol. 2. (John Wiley and Sons, 1987).
28. Bennemann, C., Paul, W., Baschnagel, J., and Binder, K., J. Phys. Cond. Mat. 11, 2179 (1999).
29. Bennemann, C., Donati, C., Baschnagel, J., and Glotzer, S.C., Nature 399, 246 (1999).
30. Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids (Academic Press, 1986).
31. Debenedetti, P.G., Metastable Liquids (Princeton Univ. Press 1996).
32.Confinement may play an additional role in Tg shifts in both filled polymers and ultra-thin films. The heterogeneous nature of the dynamics of polymer melts gives rise to a potentially large characteristic length scale near Tg [28,29,33,34]; thus confinement my shift Tg in a fashion similar to the way finite size shifts Tc in conventional critical phenomena; a study of this is underway.
33. Glotzer, S.C., J. Non-Cryst. Solids 274, 342 (2000).
34. Ediger, M.D., Ann. Rev. Phys. Chem. (in press).
35. Gibbs, J.H., and DiMarzio, E.A., J. Chem. Phys. 28, 373 (1958).
36. Adam, G. and Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).
37. Scala, A., Starr, F.W., Nave, E. La, Sciortino, F., and Stanley, H.E., Nature 406, 166 (2000).
38. Sastry, S., Phys. Rev. Lett. 85, 590 (2000).
39. Starr, F.W.et al., Phys. Rev. E, 63 in press (2001).
40. Varnik, F., Baschnagel, J., and Binder, K., J. Phys. IV 10, 239 (2000).
41. Torres, J.A., Nealey, P.F., Pablo, J.J. de, Phys. Rev. Lett. 85, 3221 (2000).
42. Cahn, J.W., , J.E. and , Hilliard, J. Chem. Phys. 28, 258 (1958).
43. Cahn, J.W., Acta Metall. 9, 795 (1961); ibid 10, 179 (1962); J. Appl. Phys. 34, 3581 (1963).
44. Glotzer, S.C. and Coniglio, A., Phys. Rev. E 50, 4241 (1994).
45. Glotzer, S.C., DiMarzio, E., and Muthukumar, M., Phys. Rev. Lett. 74, 2034 (1995).
46. Christensen, J., Elder, K., and Fogedby, H.C., Phys. Rev. E 54, 2212 (1996).
47. Motoyama, M., J. Phys. Soc. Japan 65, 1894. (1996).
48. Puri, S., Frisch, H.L., J. Phys. A 27, 6027 (1994).
49. Lapena, A.M., Glotzer, S.C., Langer, S.A., and Liu, A.J., Phys. Rev. E 60, 29 (1999).
50. Maurits, N.M., Sevink, G.J.A., Zvelindovsky, A.V., Fraaije, J.G.E.M., Macrcolecules 32, 7674 (1999).
51. Ginzburg, V.V., Peng, G., Qiu, F., and Balazs, A.C., Phys. Rev. E 60, 4352 (1999).
52. Israels, R.et al., J. Chem. Phys. 102, 8149 (1995).
53.G.Sevink, J.A., Zvelindovsky, A.V., Vlimmeren, B.A.C. van, Mauritis, N.M., and Fraaije, J.G.E.M., J. Chem. Phys. 110, 2250 (2000).
54. Karim, A.et al., Phys. Rev. E 49, 6273 (1998).
55. Peng, G.W., Qiu, F., Ginzburg, V.V., Jasnow, D., and Balazs, A.C., Science 288, 1802 (2000).
56. Qiu, F.et al., Langmuir 15, 4952 (1999).
57. Freed, K.F., J. Chem. Phys. 105, 10572 (1996).
58. Brazhnik, P.K., Freed, K.F., and Tang, H., J. Chem. Phys., 101, 9143 (1994).
59. Mills, D.L., Phys. Rev. B 3, 3887 (1971).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed