Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:07:25.183Z Has data issue: false hasContentIssue false

Simulations of Ge+ and C+ Implantations to form SiGe/Si HBT and Characterization of SiGe and SiGeC Diodes

Published online by Cambridge University Press:  22 February 2011

Ashawant Gupta
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Jeffrey W. Waters
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Carmen Cook
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Cary Y. Yang
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Akira Fukamia
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Ken-Ichi Shoji
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 4026 Kuji, Hitachi, Ibaraki 319–12, Japan
Takahiro Nagano
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 4026 Kuji, Hitachi, Ibaraki 319–12, Japan
Get access

Abstract

Simulations of Ge+ and C+ implantations in Si were performed to study bandgap grading in the SiGeC/Si heterojunction bipolar transistor (HBT). Although no bandgap discontinuity was observed at the base-emitter junction, it was found that a wide-bandgap emitter and a narrow-bandgap base with proper bandgap grading were obtainable with implantation. Electrical characterization of SiGe and SiGeC diodes formed by Ge+ and C+ implantations in Si was carried out. Current-voltage (I-V) measurement results confirm that carbon doping improves the crystalline quality of the germanium-implanted layer. On the other hand, capacitance-voltage (C-V) measurements indicate that both germanium and carbon implantations result in considerable dopant deactivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., Fresart, E. D., Stork, J. M. C., Sun, J. Y. -C., Harame, D. L. and Burghartz, J. N., IEEE Elect. Dev. Lett., 11 (4), 171173 (1990).Google Scholar
2. Patton, G. L., Stork, J. M. C., Comfort, J. H., Crabbe, E. F., Meyerson, B. S., Harame, D. L. and Sun, J. Y. -C., IEDM Tech. Dig., 1990, 1316.Google Scholar
3. Fukami, A., Shoji, K., Nagano, T. and Yang, C. Y., Appl. Phys. Lett., 57, 2345 (1990).Google Scholar
4. Lee, Y. T., Miyamoto, N. and Nishizawa, J., J. Electrochem. Soc: Solid-State Sci. and Tech., 122 (4), 530 (1975).Google Scholar
5. Bunker, S. N. and Armini, A. J., Nucl. Instrum. Methods Phys. Res., B39 (1–4), 710 (1989).CrossRefGoogle Scholar
6. Gibbons, J. F., Johnson, W. S. and Mylroie, S. W., Projected Range Statistics: Semiconductors and Related Materials, (Dowden, Hutchinson and Ross, Stroudsburg, 1975).Google Scholar
7. Biersack, J. P. and Ziegler, J. F., in Ion Implantation Techniques, edited by Ryssel, H. and Glawischnig, H. (Springer Series in Electrophysics 10, Springer-Verlag, New York, 1982), p. 157.Google Scholar
8. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Vol. I, (Pergamon, Oxford, 1985).Google Scholar
9. Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata, Y., Miyagawa, S., Morita, K., Shimizu, R. and Tawara, H., At. Data and Nucl. Data Tables, 31, 180 (1984).Google Scholar
10. Ghez, R., Appl. Phys. Lett., 45, 881 (1984).CrossRefGoogle Scholar