Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:42:21.426Z Has data issue: false hasContentIssue false

SiO2@TiO2/Acrylic Transparent UV Protective Layer for Cool Color Roofing Application

Published online by Cambridge University Press:  02 April 2014

Changfeng Chen
Affiliation:
Agiltron Inc., 15 Presidential Way, MA 01801
Yuliang Wang
Affiliation:
Agiltron Inc., 15 Presidential Way, MA 01801
Guiquan Pan
Affiliation:
Agiltron Inc., 15 Presidential Way, MA 01801
Qingwu (King) Wang
Affiliation:
Agiltron Inc., 15 Presidential Way, MA 01801
Get access

Abstract

Transparent UV protective coatings were developed by incorporating nano-TiO2 into waterborne acrylic systems to provide long-term UV protection for UV sensitive cool color roofing. Water based high crystalline TiO2 nanoparticle suspension was prepared via a gel-sol method at a basic pH. The TiO2 nanoparticles have an average size of 20 nm and are stable against agglomeration. As prepared TiO2 nanosuspension is ready to be well dispersed in commercial waterborne acrylic resin system without extra surface modification. The fabricated TiO2/acrylic nanocomposite coating achieved an UV cut-off below 350 nm with a visible transmission greater than 85% at 700 nm. It is also demonstrated that surface modification of Nano-TiO2 with a SiO2 insulation layer would suppress the catalytic activity of Nano-TiO2 and improve the UV protection for UV and photocatalysis sensitive dyes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Santamouris, M., Synnefa, A. and Karlessi, T., Solar Energy 85(12), 30853102 (2010).CrossRefGoogle Scholar
Levinson, R., Akbari, H., Berdahl, P., Wood, K., Skilton, W. and Petersheim, J., Solar Energy Materials and Solar Cells 94(6), 946954 (2010).CrossRefGoogle Scholar
Levinson, R., Berdahl, P., Akbari, H., Miller, W., Joedicke, I., Reilly, J., Suzuki, Y. and Vondran, M., Solar Energy Materials and Solar Cells 91(4), 304314 (2007).CrossRefGoogle Scholar
Synnefa, A., Santamouris, M. and Apostolakis, K., Solar Energy 81(4), 488497 (2007).CrossRefGoogle Scholar
Rossi, S., Fedel, M., Deflorian, F. and Zanol, S., Materials & Design 50(0), 332341 (2013).CrossRefGoogle Scholar
Shahini, S., Askari, M. and Sadrnezhaad, S. K., Bull. Mat. Sci. 34(6), 11891195 (2011).CrossRefGoogle Scholar
Chen, X. and Mao, S. S., Chem. Rev. 107(7), 28912959 (2007).CrossRefGoogle Scholar
Kanie, K. and Sugimoto, T., Chemical Communications (14), 15841585 (2004).CrossRefGoogle Scholar
Guo, X., Chen, C., Song, W., Wang, X., Di, W. and Qin, W., Journal of Molecular Catalysis A: Chemical (0) (2014).Google Scholar
Guo, X., Di, W., Chen, C., Liu, C., Wang, X. and Qin, W., Dalton Transactions 43(3), 10481054 (2014).CrossRefGoogle Scholar
Li, Q. Y., Chen, Y. F., Zeng, D. D., Gao, W. M. and Wu, Z. J., Journal of Nanoparticle Research 7 (2-3), 295299 (2005).CrossRefGoogle Scholar
Veronovski, N., Verhovsek, D. and Godnjavec, J., Wood Sci. Technol. 47(2), 317328 (2013).CrossRefGoogle Scholar
Teleki, A., Heine, M. C., Krumeich, F., Akhtar, M. K. and Pratsinis, S. E., Langmuir 24(21), 1255312558 (2008).CrossRefGoogle Scholar
Chen, J. H., Dai, C. A., Chen, H. J., Chien, P. C. and Chiu, W. Y., J. Colloid Interface Sci. 308(1), 8192 (2007).CrossRefGoogle Scholar
Sugimoto, T., Zhou, X. P. and Muramatsu, A., J. Colloid Interface Sci. 259(1), 4352 (2003).CrossRefGoogle Scholar
Chen, C. F., Jiang, C. H. and Tripp, C. P., Colloids and Surfaces B-Biointerfaces 105, 173179 (2013).CrossRefGoogle Scholar