Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:05:55.068Z Has data issue: false hasContentIssue false

Spin-Dependent Processes In Thin-Film Silicon Solar Cells

Published online by Cambridge University Press:  17 March 2011

K. Lips
Affiliation:
Hahn-Meitner-Institut, Abt. Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
R. Müller
Affiliation:
Hahn-Meitner-Institut, Abt. Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
P. Kanschat
Affiliation:
Hahn-Meitner-Institut, Abt. Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
F. Finger
Affiliation:
Institut für Schicht und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Abt. Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

We report on electrically detected magnetic resonance (EDMR) studies in three different types of thin-film silicon solar cells: (i) c-Si absorbers with epitaxially grown silicon thin-film emitters (ii) c-Si absorbers with hydrogenated amorphous silicon (a-Si:H) emitters, and (iii) microcrystalline silicon (µc-Si:H) pin diodes. Although cells of type (i) and (ii) are of a similar structure their EDMR spectra are completely different. We identify surface recombination via Pb0 centers in cells with c-Si emitters but hopping transport through conduction bandtail states in the 30 nm thin a-Si:H emitter layer. No signals related to interface recombination are detected in either cell. The EDMR signals of cell (iii) are identified as hopping among tail states of the conduction band with a subsequent nonradiative tunneling transition to neutral dangling bonds. At elevated temperature recombination is suggested to be dominated by direct capture. The EDMR signal of the dark current can be described with a simple diode model only involving diffusion and recombination currents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Honig, A., Physical Review Letter 17, 1492 (1966).Google Scholar
2. Lepine, D.J., Prejan, J.J., in 10th Int. Conf. Phys. of Sem., Cambridge, MA, 1970), p. 805.Google Scholar
3. Solomon, I., Biegelsen, D., Knights, J.C., Solid State Comm. 22, 505 (1977).Google Scholar
4. Kaplan, D., Solomon, I., Mott, N.F., J. de Physique 39, L51 (1978).Google Scholar
5. Rong, F.C., Buchwald, W.R., Poindexter, E.H., Warren, W.L., Keeble, D.J., Solid State Electron. 34, 835 (1991).Google Scholar
6. Lips, K., Lerner, C., Fuhs, W., J. Non-Cryst. Solids 198–200, 267 (1996).Google Scholar
7. Lips, K., Fuhs, W., J. Appl. Phys. 74, 3993 (1993).Google Scholar
8. Xiong, Z., Miller, D.J., Appl. Phys. Lett. 63, 352 (1993).Google Scholar
9. Lannoo, M., Stievenard, D., Deresmes, D. et al. Mat. Sci. For. 143–147, 1359 (1994).Google Scholar
10. Lips, K., Mat. Res. Soc. Symp. Proc., Vol. 377, p. 455.Google Scholar
11. Lerner, C., Lips, K., Fuhs, W., J. Non-Cryst. Solids 227–230, 1177 (1998).Google Scholar
12. Lips, K., Schütte, S., Fuhs, W., Phil Mag B 65, 945 (1992).Google Scholar
13. Lips, K., Platen, J., Brehme, S. et al. , Mat. Res. Soc. Symp. Proc. 536, 457 (1998).Google Scholar
14. Poindexter, E.H., Caplan, E.H., Deal, B.E., Razouk, R.R., J. Appl. Phys. 52, 879 (1981).Google Scholar
15. Henderson, B., Pepper, M., Vranch, R.L., Semicond. Sci. Technol. 4, 1045 (1989).Google Scholar
16. Stathis, J.H., Appl. Phys. Lett. 68, 1669 (1996).Google Scholar
17. Dersch, H., Schweitzer, Stuke, J., Phys. Rev. B 28, 4678 (1983).Google Scholar
18. Cullis, P.R., Marko, J.R., Phys. Rev. B 11, 4184 (1975).Google Scholar
19. Brandt, M.S., Stutzmann, M., Phys Rev B 43, 5184 (1991).Google Scholar
20. Vetterl, O., Finger, F., Carius, C. et al. , Solar Energy Mat. & Solar Cells 62, 97 (2000).Google Scholar
21. Finger, F., Malten, C., Hapke, P., Carius, R. et al. , Phil. Mag. Lett. 70, 247 (1994).Google Scholar
22. Kondo, M., Nishimiya, T., Saito, K. et al. , J. Non.-Crys. Solids. 227–230, 1031 (1998).Google Scholar
23. Kanschat, P., Lips, K., Brüggemann, R., Hierzenberger, A., Sieber, I., Fuhs, W., Mat. Res. Soc. Symp. Proc. 507, 793 (1999).Google Scholar
24. Boulitrop, F., Dunstan, D.J., Solid State Comm. 44, 841 (1982).Google Scholar
25. Vomvas, A., Fritzsche, H., J. Non-Crys. Solids 97 & 98, 823 (1987).Google Scholar
26. Stachowitz, R., Fuhs, W., Jahn, K., Phil. Mag. B 62, 5 (1990).Google Scholar
27. Street, R.A., Hydrogenated Amorphous Silicon (Cambridge Univ.Press, Cambridge, 1991).Google Scholar
28. Shklovskii, B.I., Levin, E.I., Fritzsche, H., Baranovskii, S.D., in Transport, correlation and structural defects, edited by Fritzsche, H. (World Scientific, Singapore, 1990), p. 161.Google Scholar
29. Kanschat, P., Lips, K., Fuhs, W., submitted for publication.Google Scholar
30. Solomon, I., Solid State Comm. 20, 215 (1976).Google Scholar
31. Rong, F., Poindexter, E.H., Harmatz, M., Buchwald, W. et al. , Solid State Comm. 76 (1990).Google Scholar
32. Christmann, P., Stadler, W., Meyer, B.K., Appl. Phys. Lett. 66, 1521 (1995).Google Scholar
33. Zhou, J.H., Yamasaki, S., Isoya, J., Ikuta, K., Kondo, M., Matsuda, A., Tanaka, K., Mat. Res. Soc. Symp. Proc. 452, 821 (1997).Google Scholar
34. Christmann, P., Wetzel, C., Meyer, B.K., Asenov, A. et al. , Appl. Phys. Lett. 60, 1857 (1992).Google Scholar
35. Xiong, Z., Miller, D.J., J. Appl. Phys. 77, 5201 (1995).Google Scholar