Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T07:24:19.465Z Has data issue: false hasContentIssue false

Spray Produced Coral-Shaped Assemblies of MnS Nanocrystal Clusters

Published online by Cambridge University Press:  01 February 2011

Lilac Amirav
Affiliation:
lilac@technion.ac.il, Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Solid State Institute and The Russell Berrie Nanotechnology Institute, Technion city, Haifa, 32000, Israel, 972-4-8293750, 972-4-8295703
Efrat Lifshitz
Affiliation:
ssefrat@tx.technion.ac.il, Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Solid State Institute and The Russell Berrie Nanotechnology Institute, Haifa, 32000, Israel
Get access

Abstract

A novel spray-based technique enables the production of high quality, free, uncoated semiconductor nanocrystals. Their collection, following spray droplet desolvation during flight, could result in unusual structures. We report on spray-produced ordered clusters (∼50nm diameter) of MnS nanocrystals with grain size range of 1-2nm, and their assembly into micron-sized coral-shaped fractal aggregates. Ballistic cluster-particle aggregation, with the introduction of physical interaction between particles, is suggested as a model for the assemblies' growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. E., J. Chem. Phys. 1984, 80, 4403 and 1986, 90, 2555.Google Scholar
2. Wang, Y. and Herron, N., J. Phys. Chem. 1991, 95, 525.Google Scholar
3. Norris, D. J.; Efros, A. L.; Rosen, M., and Bawendi, M., Phys. Rev. B. 1996, 53, 16347.Google Scholar
4. Alivisatos, P., J. Phys. Chem. 1996, 100, 13226.Google Scholar
5. Efros, A. L. and Rosen, M., Ann. Rev. Mater. Sci. 2000, 30, 475.Google Scholar
6. Stranski, N. and Krastanow, , Nature. K1.IIb, 1938, 146, 797.Google Scholar
7. Murray, C. B., Kagan, C. R. and Bawendi, M. G., Annu. Rev. Mater. Sci. 2000, 30, 545.Google Scholar
8. Murray, C.B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 1993, 115, 8706.Google Scholar
9. Manna, L., Scher, E. C., and Alivisatos, A. P., J. of Cluster Sci. 2002, 13 (4), 521.Google Scholar
10. Peng, Z. A. and Peng, X., J. Am. Chem. Soc. 2001, 123, 1389.Google Scholar
11. Amirav, L., Amirav, A. and Lifshitz, E., J. Phys. Chem. B. 2005, 109, 98579860.Google Scholar
12. Meakin, P. Chem. Phy. Lett. 1986, 123, (5), 428432.Google Scholar
13. Swartz, S. A., Meyer, G.A, Spectrochim. Acta B, 1986, 41, 1287 Google Scholar
14. Vold, M. J. J. Colloid. Sci. 1963, 18, 684; Sutherland D. N. J, Colloid. Int. Sci. 1966, 22 300.Google Scholar
15. Ramanlal, P. and Sander, L. M., Phys. Rev. Lett. 1985, 54 (16), 1828.Google Scholar
16. Meakin, P., Phys. Rev. B, 1984, 29, 3722 and J. Colloid Int. Sci. 1983, 96, 415.Google Scholar
17. Block, A.; Von Bloh, W. and Schellnhuber, H. J., J. Phys. A: Math. Gen. 1991, 24, L1037.Google Scholar
18. Leamy, H.J.; Gilmer, G.H and Dirks, A.G., in Current Topics in Materials Science, edited by Kaldis, E., North Holland, Amsterdam, Vol. 6, 1980.Google Scholar
19. Bensimon, D., Shraiman, B., and Liang, S., Phys. Lett. 1984, 102A, 238.Google Scholar