Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T08:19:28.828Z Has data issue: false hasContentIssue false

Stability of Organic Thin Film Transistors

Published online by Cambridge University Press:  17 March 2011

Jeong In Han
Affiliation:
Information Display Research Center, Korea Electronics Technology Institute, Pyungtaek, Kyunggi, Korea
Yong Hoon Kim
Affiliation:
Information Display Research Center, Korea Electronics Technology Institute, Pyungtaek, Kyunggi, Korea
Sung Kyu Park
Affiliation:
Information Display Research Center, Korea Electronics Technology Institute, Pyungtaek, Kyunggi, Korea
Dae Gyu Moon
Affiliation:
Information Display Research Center, Korea Electronics Technology Institute, Pyungtaek, Kyunggi, Korea
Won Keun Kim
Affiliation:
Information Display Research Center, Korea Electronics Technology Institute, Pyungtaek, Kyunggi, Korea
Get access

Abstract

The stability of organic thin film transistors (OTFTs) has become one of the most vital issues in this area of research. In this report, we investigated the stability of rubber stamp printed OTFTs. The electrical properties such as saturation field effect mobility, threshold voltage and on/off current ratio change significantly in ambient air condition. In order to analyze the degradation of the device, transistors were measured in vacuum, dry N2 and air environment as a function of time. In vacuum and dry N2 atmosphere, saturation field effect mobility and threshold voltage variations are relatively small compared to those measured in ambient condition.

To realize an air stable device, we applied a passivation layer which protects the device from oxygen or water molecules which is believed to be the source of the degradation. With the passivation layer, the threshold voltage shift was reduced suggesting that a proper passivation layer is a prerequisite in organic-based electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zilker, S. J., Detcheverry, C., Cantatore, E. and Leeuw, D. M. de, Appl. Phys. Lett. 79, 1124 (2001).Google Scholar
2. Schön, J. H., Appl. Phys. Lett. 79, 4163 (2001).Google Scholar
3. Bao, Z., Dodabalapur, A. and Lovinger, A. J., Appl. Phys. Lett. 69, 4108 (1996).Google Scholar
4. Abdou, M. S. A., Orfino, F. P., Son, Y. and Holdcroft, S., J. Am. Chem. Soc. 119, 4518 (1997).Google Scholar
5. Wang, G., Swensen, J., Moses, D., and Heeger, A. J., J. Appl. Phys. 93, 6137 (2003).Google Scholar
6. Rep, D. B. A., Morpurgo, A. F., Sloof, W. G. and Klapwijk, T. M., J. Appl. Phys. 93, 2082 (2003).Google Scholar
7. Sirringhaus, H., Brown, P. J. and Friend, R. H., Nature 401, 685 (1999).Google Scholar
8. Sirringhaus, H., Tessler, N. and Friend, R. H., Synth. Met. 102, 857 (1999).Google Scholar
9. Łuzny, W., Trznadel, M. and Proń, A., Synth. Met. 81, 71 (1996).Google Scholar
10. Fell, H. J., Samuelsen, E. J., Als-Nielsen, J., Grübel, G. and Mårdalen, J., Solid State Commun. 71, 435 (1989).Google Scholar
11. Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J. and Meijer, E. W., Synth. Met. 111–112, 129 (2000).Google Scholar
12. Dimitrakopoulos, C. D. and Mascaro, D. J., IBM J. Res. Dev. 45, 11 (2001).Google Scholar
13. Gundlach, D. J., Jackson, T. N., Schlon, D. G. and Nelson, S. F., Appl. Phys. Lett. 74, 3302 (1999).Google Scholar
14. Schön, J. H. and Batlogg, B., Appl. Phys. Lett. 74, 260 (1999).Google Scholar