Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T01:27:13.408Z Has data issue: false hasContentIssue false

Static Devices with New Permanent Magnets

Published online by Cambridge University Press:  25 February 2011

J. Chavanne
Affiliation:
Laboratoire Louis Néel, C.N.R.S., 166X, 38042 Grenoble cedex, France
J. Laforest
Affiliation:
Laboratoire Louis Néel, C.N.R.S., 166X, 38042 Grenoble cedex, France
R. Pauthenet
Affiliation:
Laboratoire Louis Néel, C.N.R.S., 166X, 38042 Grenoble cedex, France
Get access

Abstract

The high remanence and coercivity of the new permanent magnet materials are of special interest in the static applications. High ordering temperature and large uniaxial anisotropy at the origin of their good permanent magnet properties are obtained in rare earth-transition metal compounds. Binary SmCo5 and Sm2Co17 and ternary Nd2Fe14B compounds are the basis materials of the best permanent magnets. New concepts of calculations of static devices with these magnets can be applied : the magnetization can be considered as rigid, the density of the surface Amperian current is constant, the relative permeability is approximately 1 and the induction calculations are linear. Examples of hexapoles with Sm-Co and NdFeB magnets are described and the performances are compared. The problems of temperature behaviour and corrosion resistance are underlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kirchmayr, H.R. and Poldy, C.A. in Handbook on the Phys. and Chem. of Rare Earths, Eds. Gschneidner, K.A. and Eyring, L. (North-Holland Publishing Co, 1979), p. 55.Google Scholar
[2] Buschow, K.H.J., Rep. Prog. Phys., 40, 1179 (1977).Google Scholar
[3] Wernick, J.H. and Geller, S., Acta Cryst., 12, 662 (1959).Google Scholar
[4] Florio, J.H., Baenziger, N.C. and Rundle, R.E., Acta Cryst., 9, 371 (1956).Google Scholar
[5] Makrov, F.S. and Vinogradov, S.P., Kristallografiya, 1, 634 (1956).Google Scholar
[6] Broeder, F.J.A. den and Buschow, K.H.J., J. Less Comm. Metals, 29, 65 (1972).Google Scholar
[7] Herbst, J.T., Croat, J.J., Pinkerton, F.E. and Yelon, W.B., Phys. Rev., B 29, 4176 (1984).Google Scholar
[8] Givord, D., Li, H.S. and Moreau, J.M., Sol. Stat. Commun., 50, 477 (1984).Google Scholar
[9] Alameda, J.M., Déportes, J., Givord, D., Lemaire, R. and Lu, Q., J. Magn. Magn. Mat., 17, 663 (1980).Google Scholar
[10] Givord, D., Li, H.S. and Bâthie, R. Perrier de la, Sol. Stat. Commun., 51, 857 (1984).Google Scholar
[11] Benz, M.G. and Martin, D.L., Appl. Phys. Lett., 17, 176 ( 1970).Google Scholar
[12] Sagawa, M., Fujimura, S., Togawa, M., Yamamoto, H. and Matsuura, Y., J. Appl. Phys., 55, 2083 (1984).Google Scholar
[13] Givord, D., Laforest, J., Li, H.S., Liénard, A., Bathie, R. Perrier de la and Tenaud, P., J. de Physique, C6, 213 (1985).Google Scholar
[14] Pauthenet, R., J. de Physique, C1, 285 (1984).Google Scholar
[15] Halbach, K., Nuclear Instr. and Methods, 169, 1 (1980).Google Scholar
[16] Geller, R., Jacquot, B. and Pauthenet, R., Rev. Physique Appl., 15, 995 (1980).Google Scholar
[17] Pauthenet, R., Geller, R., jacquot, B., Lamy, M. and Debernardi, J., Proc. 4th Intern. Workshop on E.C.R. ion sources (C.E.N. Grenoble, 1982).Google Scholar
[18] Geller, R., Jacquot, B. and Sortais, P., Nuclear Instr. and Methods, A243, 244 (1986).Google Scholar