Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T17:08:24.436Z Has data issue: false hasContentIssue false

Strained Ge Channel p-type MOSFETs Fabricated on Si1−xGex/Si Virtual Substrates

Published online by Cambridge University Press:  15 March 2011

Minjoo L. Lee
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Christopher W. Leitz
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Zhiyuan Cheng
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Arthur J. Pitera
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Gianni Taraschi
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Dimitri A. Antoniadis
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Eugene A. Fitzgerald
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We have fabricated strained Ge channel p-type metal oxide semiconductor field-effect transistors (p-MOSFETs) on Si1−xGex (x=0.7 to 0.9) virtual substrates. Capping the channel with a relaxed, epitaxial silicon layer eliminates the poor interface between silicon dioxide (SiO2) and pure Ge. The effects of the Si cap thickness, the strain in the Ge channel, and the thickness of the Ge channel on hole mobility enhancement were investigated. Optimized strained Ge p-MOSFETs show hole mobility enhancements of nearly 8 times that of co-processed bulk Si devices across a wide range of vertical field. These devices demonstrate that the high mobility holes in strained Ge can be utilized in a MOS device despite the need to cap the channel with a highly dislocated Si layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Currie, M.T., Leitz, C.W., Langdo, T.A. et al. , J. vac. Sci. Technol. B 19 (6), 2268 (2001).Google Scholar
2 Welser, J., Hoyt, J.L., and Gibbons, J.F., IEEE Electron Device Letters 15 (3), 100 (1994).Google Scholar
3 Nayak, D.K., Goto, K., Yutani, A. et al. , IEEE Transactions on Electron Devices 43 (10), 1709 (1996); K. Rim, J. Welser, J.L. Hoyt et al., IEEE IEDM Tech. Dig., 517 (1995).Google Scholar
4 Hock, G., Kohn, E., Rosenblad, C. et al. , Applied Physics Letters 76 (26), 3920 (2000).Google Scholar
5 Leitz, C.W., Currie, M.T., Lee, M.L. et al. , Applied Physics Letters 79 (Submitted for Publication) (2001).Google Scholar
6 Ransom, C.M., Jackson, T.N., and DeGelormo, J.F., IEEE Transactions on Electron Devices 38 (12), 2695 (1991).Google Scholar
7 Fischetti, M.V. and Laux, S.E., J. Appl. Phys. 80 (4), 2234 (1996).Google Scholar
8 Koester, S.J., Hammond, R., and Chu, J.O., IEEE Electron Device Letters 21 (3), 110 (2000); U. Konig and F. Schaffler, IEEE Electron Device Letters 14 (4), 205 (1993); G. Hock, T. Hackbarth, U. Erben et al., Electronics Letters 34 (19), 1888 (1998).Google Scholar
9 Currie, M.T., Samavedam, S.B., Langdo, T.A. et al. , Applied Physics Letters 72 (14), 1718 (1998).Google Scholar
10 Xie, Y.H., Gilmer, G.H., Roland, C. et al. , Physical Review Letters 73 (22), 3006 (1994).Google Scholar
11 Legoues, F.K., Rosenberg, R., Nguyen, T. et al. , J. Appl. Phys. 65 (4), 1724 (1989).Google Scholar
12 Lee, M.L., Leitz, C.W., Cheng, Z. et al. , Applied Physics Letters 79 (20), 3344 (2001).Google Scholar
13 Armstrong, M., Ph.D. Thesis Massachusetts Institute of Technology (1999).Google Scholar
14 Morar, J.F., Batson, P.E., and Tersoff, J., Physical Review B 47 (7), 4107 (1993).Google Scholar
15 Schaffler, F., Semicond. Sci. Technol. 12, 1515 (1997).Google Scholar
16 Fitzgerald, E.A., Materials Science Reports 7, 87 (1991).Google Scholar