Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:02:40.478Z Has data issue: false hasContentIssue false

Structure and Bonding in Nitrided Oxide Films by Sims and Xps

Published online by Cambridge University Press:  10 February 2011

S. W. Novak
Affiliation:
Evans East, 104 Windsor Center, Suite 101, East Windsor, NJ 08520snovak@evanseast.com
J. R. Shallenberger
Affiliation:
Evans East, 104 Windsor Center, Suite 101, East Windsor, NJ 08520
D. A. Cole
Affiliation:
Evans East, 104 Windsor Center, Suite 101, East Windsor, NJ 08520
J.W. Marino
Affiliation:
Evans East, 104 Windsor Center, Suite 101, East Windsor, NJ 08520
Get access

Abstract

The N distribution and bonding in five types of oxynitride films have been investigated using SIMS and XPS. Films were grown using N2O, NO-O2 and NH3 gas sources, a remote plasma N source and a Helicon plasma source. The SIMS measurements show different N distributions for each type of sample. XPS measurements show only N≡Si3 bonding in the gas source films, N≡Si3 and O-N-Si2 bonding in the remote plasma sample, and N≡Si3, O-N≡Si2, and O2≡N-Si bonding in the Helicon plasma sample. Angle-resolved XPS measurements show that the O2≡N-Si bonding is deepest in the sample whereas the O-N≡Si2 bonding is associated with a surface oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hill, J.M., Royce, D.G., Fadley, C.S., Wagner, L.F. and Grunthaner, F.J., Chem. Phys. Lett. 44 225 (1976).10.1016/0009-2614(76)80496-4Google Scholar
2 Bischoff, J.L., Lutz, F., Bolmont, D. and Kuber, L., Surf Sci. 251/252 170 (1991).10.1016/0039-6028(91)90975-XGoogle Scholar
3 Bhat, M., Yoon, G.W., Kin, J., Kwong, D.L., Arendt, M. and White, J.M., Appl. Phys. Lett. 64 1168 (1994).10.1063/1.111951Google Scholar
4 Green, M.L., Brasen, D., Evans-Lutterodt, K.W., Feldman, L.C., Krisch, K., Lennard, W., Tang, H.-T., Manchanda, L. and Tang, M.-T., Appl. Phys. Lett. 65 848 (1994).10.1063/1.112980Google Scholar
5 Hegde, R.I., Tobin, P.J., Reid, K.G., Maiti, B. and Ajuria, S.A., Appl. Phys. Lett. 66 2882 (1995)10.1063/1.113461Google Scholar
6 Lu, H.C., Gusev, E.P., Gustafsson, T. and Garfunkel, E., Green, M.L., Brasen, D. and Feldman, L.C., Appl. Phys. Lett. 69 2713 (1996).10.1063/1.117687Google Scholar
7 Hegde, R. I., Maiti, B., Rai, R.S., Reid, K.G. and Tobin, P.J., J. Electrochem. Soc. 145 L1315 (1998).10.1149/1.1838200Google Scholar
8 Baumvol, I.J.R., Stedile, F.C., Ganem, J.-J., Trimaille, I. and Rigo, S., Appl. Phys Lett 70 2007 (1997).10.1063/1.118804Google Scholar
9 Kraft, R., Schneider, T.P., Dostalik, W.W. and Hattangady, S., J. Vac. Sci. Technol. B 15, 967 (1997).10.1116/1.589516Google Scholar
10 Frost, M.R. and Magee, C.W., Appl. Surf. Sci. 104/105 379 (1996).10.1016/S0169-4332(96)00175-4Google Scholar
11 Tang, H.T., Lennard, W.N., Zinke-Allmang, M., Mitchell, I.V., Feldman, L.C., Green, M.L. and Brasen, D., Appl. Phys. Lett. 64 3473 (1994).10.1063/1.111948Google Scholar
12 Tsong, I.S.T., Monkowski, J.R. and Hoffman, D.W., Nucl. Inst. Meth. 182/183 237 (1981).10.1016/0029-554X(81)90693-5Google Scholar
13 Kaluri, S.R. and Hess, D.W., Appl. Phys. Lett. 69 1053 (1996).10.1063/1.116928Google Scholar
14 Ting, W., Hwang, H., Lee, J. and Kwong, D.L., Appl. Phys. Lett. 57 2808 (1990).10.1063/1.104199Google Scholar
15 Shallenberger, J.R., Cole, D.A., and Novak, S.W., in press, Jour. Vac. Sci. Tech. (1999).Google Scholar