Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T15:44:52.286Z Has data issue: false hasContentIssue false

Structure and Morphology of Tetracene Thin Films on Hydrogen-Terminated Si(001)

Published online by Cambridge University Press:  26 February 2011

X. R. Qin
Affiliation:
xqin@physics.uoguelph.ca, University of Guelph, Department of Physics, 50 Stone Road East, Guelph, N1G 2W1, Canada, (519)824-4120 ext 53675
A. Tersigni
Affiliation:
andrew@physics.uoguelph.ca, University of Guelph, Department of Physics, Guelph, Ontario, N1G 2W1, Canada
J. Shi
Affiliation:
jun@physics.uoguelph.ca, University of Guelph, Department of Physics, Guelph, Ontario, N1G 2W1, Canada
D. T. Jiang
Affiliation:
detong@physics.uoguelph.ca, University of Guelph, Department of Physics, Guelph, Ontario, N1G 2W1, Canada
Get access

Abstract

Scanning tunneling microscopy (STM), atomic force microscopy (AFM) and near-edge x-ray absorption fine structure (NEXAFS) have been used to study the structure of tetracene films on hydrogen-passivated Si(001). A distinct growth morphology change that occurs around a few monolayers of film thickness was characterized. This coverage-dependent film structural phase transition leads to a molecularly ordered film structure commensurate with the crystalline substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Forrest, S. R., Chem. Rev. 97, 1793 (1997)Google Scholar
2. Schreiber, F., Phys. Stat. Sol. 201, 1037 (2004)Google Scholar
3. Witte, G. and Wöll, Ch., J. Mater. Res., 19, 1889 (2004)Google Scholar
4. Campbell, R. B. and Robertson, J. M., Acta Cryst. 15, 289 (1962); J. M. Robertson, V.C. Sinclair and J. Trotter, Acta Cryst. 14, 697 (1961)Google Scholar
5. Gundlach, D. J., Nichols, J. A., Zhou, L., and Jackson, T. N., Appl. Phys. Lett. 80, 2925 (2002)Google Scholar
6. Hepp, A., Heil, H., Weise, W., Ahles, M., Schmechel, R., and Seggern, H. von, Phys. Rev. Lett. 91, 157406 (2003)Google Scholar
7. Cicoira, F., Santato, C., Dinelli, F., Murgia, M., Loi, M. A., Biscarini, F., Zamboni, R., Heremans, P., and Muccini, M., Adv. Funt. Mater. 15, 375 (2005)Google Scholar
8. Milita, S., Servidori, M., Cicoira, F., Santato, C., and Pitteri, A., Nucl. Instrum. and Method in Phys. Res. B, 246, 101(2006).Google Scholar
9. Heringdorf, F.-J. Meyer zu, Reuter, M. C., and Tromp, R. M., Nature 412, 517 (2001).Google Scholar
10. Ruiz, R., Nickel, B., Koch, N., Feldman, L. C., Haglund, R. F., Kahn, A., and Scoles, G., Phys. Rev. B 67, 125406 (2003)Google Scholar
11. Beernink, G., Strunskus, T., Witte, G., and Wöll, Ch., Appl. Phys. Lett. 85, 398 (2004); S. Lukas, S. Söhnchen, G. Witte, and Ch. Wöll, ChemPhysChem 5, 266 (2004).Google Scholar
12. Shi, J. and Qin, X. R., Phys. Rev. B 73, 121303(R) (2006)Google Scholar
13. Tersigni, A., Shi, J., Jiang, D. T., and Qin, X. R., Phys. Rev. B 74, 205326 (2006)Google Scholar
14. Stöhr, J., NEXAFS Spectroscopy, Surface Science Series, Springer, Second Printing 2003.Google Scholar