Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T23:21:32.776Z Has data issue: false hasContentIssue false

Studies of Molecular Orientation in Deformed Semicrystalline Polymers by X- Ray Scattering Employing Synchrotron Radiation

Published online by Cambridge University Press:  26 February 2011

S. Röber
Affiliation:
Institut für Technische und Makromolekulare Chemie der Universität Hamburg
R. Gehrke
Affiliation:
Institut für Technische und Makromolekulare Chemie der Universität Hamburg
H. G. Zachmann
Affiliation:
Institut für Technische und Makromolekulare Chemie der Universität Hamburg
Get access

Introduction

The possibility of using synchrotron radiation as a source of X-rays for scattering experiments has considerably improved the methods of the characterisation of the molecular orientation and molecular order in polymers. In another publication [1], it has been shown that the morphology of ultra highly drawn polyethylene is correlated to the kinetics of isothermal melting, as determined by X- ray scattering employing synchrotron radiation. In this paper we present some results on chain orientation and orientation of crystal lamellae surfaces in uniaxially and biaxially drawn films of polyethyleneterephthalate (PET). These results were obtained by inserting a pole figure goniometer into the synchrotron radiation beam and measuring the wide angle X-ray scattering (WAXS) and small angle X- ray scattering (SAXS) with different angles of incidence of the primary beam onto the sample.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Clements, J., Zachmann, H.G., Ward, I.M., to be publishedGoogle Scholar
2) Alexander, L.E., X-Ray Diffraction Methods in Polymer Science, Wiley and Sons, New York (1961)Google Scholar
3) Heckmann, W., Spilgies, G., Kolloid-Z u. Z. Polymere, 250, 1150 (1972)CrossRefGoogle Scholar
4) White, J. L, Spruiell, J.E., Polymer Engeneering and Science, 21, 13 (1981)Google Scholar
5) Vries, A.J. de, Pure and Appl. Chem., 53, 1011 (1981)Google Scholar
6) Gehrke, R., Seferis, J.C., Warbington, R., Zachmann, H.G., to be publishedGoogle Scholar
7) Elsner, G., Günther, B., Zachmann, H.G. Proceedings of Antec 82, San FranciscoGoogle Scholar
8) White, J.L., Spruiell, J.E., Choi, Kyong-Ju, J. Polym. Sci., 20, 27 (1982)Google Scholar
9) Delzenne, P., Doktorarbeit, Grenoble (1986)Google Scholar
10) Boone, M.B., Clark, E.S., Proceedings of Antec 85Google Scholar
11) Heffelfinger, C.J., Lippert, E. L, J. Polym. Sci., 15, 2699 (1971)Google Scholar
12) Schulz, L.G., J. Appl. Phys., 20, 1030, (1949)Google Scholar
13) Decker, B.F., Asp, E.T., Harker, D., J. Appl. Phys., 19, 388 (1948)Google Scholar
14) Elsner, G., Riekel, C., Zachmann, H.G., Advances in Polym. Sci., 67, 1 (1985)CrossRefGoogle Scholar
15) Kunz, C., Topics in Current Physics, Vol.10, Springer Verlag, Heidelberg (1979)Google Scholar
16) Warbington, R.W., Crowe, W.C., Seferis, J.C., Vries, A.J. de, Gehrke, R., Zachmann, H.G., Colloid and Polym. Sci., 264, 683 (1986)Google Scholar
17) Röber, S., Zachmann, H.G., to be publishedGoogle Scholar