Skip to main content Accessibility help

Study of Afterglow and Thermoluminescence Properties of Synthetic Opal-C Nanoparticles for In Vivo Dosimetry Applications

  • Marlen Hernández-Ortiz (a1), Laura S. Acosta-Torres (a2), Rodolfo Bernal (a3), Catalina Cruz-Vázquez (a4) and Víctor M. Castaño (a5)...


Opal particles, with diameter ca. 80 nm, were synthesized by the Stöber method. Samples were exposed to 100 Gy of beta particle irradiation and its thermoluminescence (TL) emission was recorded. TL response presents good reproducibility, standard deviation 1 %. The glow curve displays two TL peaks 86 and 400 °C and the afterglow (AG) phenomenon is observed immediately after irradiation (< 150°C). The synthetic opal-C exhibits a linear dependence of AG response as function of dose from 0.25 to 8 Gy. This dose range is of interest for personal and clinical dosimetry. Moreover, a previous study indicates that cytotoxic and genotoxic effects caused by opal nanoparticles, did not induce unrepairable DNA damage neither a cellular harm. Therefore, our results show synthetic opal-C is a material useful for in vivo radiation dosimetry.



Hide All
1. Chen, R. and McKeever, S. W. S., Theory of Thermoluminescence and Related Phenomena, (World Scientific, Singapore, 1997) p. 2.□
2. Furetta, C. and Weng, P. S., Operational Thermoluminescence Dosimetry, (World Scientific, Singapore, 1998) p. 212.□
3. Rah, J. E., Hwang, U. J., Jeong, H., Lee, S. Y., Lee, D. H., Shin, D. H., Yoon, M., Lee, S. B., Lee, R. and Park, S. Y., Radiat. Meas. 46, 4045 (2011)
4. Pérez Salas, R., Meléndrez, R., Aceves, R. and Barboza-Flores, M., Appl. Phys. Lett. 63, 3017(1993).
5. Brito, H. F., Hölsä, J., Laamanen, T., Lastusaari, M., Malkamäki, M. and Rodrigues, L. C. V., Optical Materials Express 2, 371 (2012); H. Jungner, ibid., 287; J. Hassinen, J. Niittykoski and P. Novák, ibid., J. Therm. Anal. Calorim. 105, 657(2011).
6. Meakins, R. L., Clark, G. J. and Dickson, B. L., American Mineralogist 63, 737 (1978).
7. Hatipoglu, M., J. Afr. Earth Sci. 54, 1 (2009).
8. Boyko, V., Dovbeshko, G., Fesenko, O., Gorelik, V., Moiseyenko, V., Romanyuk, V., Shvets, T., and Vodolazkyy, P., Mol. Cryst. Liq. Cryst. 535, 3041 (2011).
9. Voshchinskii, Y. A. and Gorelik, V. S., Inorg. Mater. 48, 150(2012).
10. Hernández-Ortiz, M., Acosta-Torres, L. S., Hernández-Padrón, G., Mendieta, A. I., Bernal, R., Cruz-Vázquez, C. and Castaño, V. M., BioMed. Eng. OnLine 11, 78 (2012).
11. Hernández-Ortiz, M., Hernández-Padrón, G., Bernal, R., Cruz-Vázquez, C., Vega-González, M., Castaño, V. M., Digest J. Nanomater. Biostruct. 7, 1297 (2012).
12. Chen, R. and Leung, P. L., Radiat. Prot. Dosim. 84, 4346 (1999).
13. Mckeever, S.W.S., Thermoluminescence of solids, (Cambridge University Press, Cambrige, 1988) p. 47.
14. Koul, D. K., Pramana – J. Phys. 71, 1209 (2008).
15. Correchera, V., García-Guinea, J., Bustillo, M. A. and García, R., Radiat. Eff. Defect Solids 164, 59 (2009).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed