Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T20:12:09.919Z Has data issue: false hasContentIssue false

Surface and Bulk Microstructural Modifications in Amorphous Carbon Films after Post-Growth Low Energy Ion Beam Irradiation

Published online by Cambridge University Press:  21 March 2011

P. Patsalas
Affiliation:
Department of Physics, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece
S. Logothetidis
Affiliation:
Department of Physics, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece
Get access

Abstract

We present the crystallization effects occurring in sputtered amorphous Carbon (a-C) thin films deposited on Si induced by post-growth low energy (0.5-1.5 keV) Ar+ ion beam irradiation (IBI). The a-C films after IBI have the form of an amorphous matrix with embedded crystalline regions. X-ray diffraction and Electron Microscopy measurements identified the crystalline phases of carbon and SiC. We study in detail the effects of ion energy and fluence on the crystallization process. It was found that low fluence (∼2×1016 ions/cm2) of ions with an optimum ion energy (∼1.5 keV) promoted the diamond formation. X-Ray Reflectivity (XRR) and Spectroscopic Ellipsometry were used to study the amorphous matrix. XRR discriminated the IBI induced surface and bulk effects through the density and the a-C surface roughness, showing surface smoothing to be more prominent for low energy IBI.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Logothetidis, S., Appl. Phys. Lett. 69, 158 (1996).Google Scholar
2. Mounier, E., Pauleau, Y., Diam. Relat. Mater. 6, 1182 (1991).Google Scholar
3. Patsalas, P., Logothetidis, S., Douka, P., Gioti, M., Stergioudis, G., Komninou, Ph., Nouet, G. and Karakostas, Th., Carbon 37, 865 (1999).Google Scholar
4. Patsalas, P. and Logothetidis, S., J. Appl. Phys. 88, 6346 (2000).Google Scholar
5. Patsalas, P. and Logothetidis, S., Nucl. Instr. Meth. Phys. Res. B, in press (2001).Google Scholar
6. Silva, S.R.P., Xu, S., Tay, B.X., Tan, H.S., Milne, W.I., Appl. Phys. Lett. 69, 491 (1996).Google Scholar
7. Banhart, F., J. Appl. Phys. 81, 3440 (1997).Google Scholar
8. Zaiser, M., Banhart, F., Phys. Rev. Lett. 79, 3680 (1997).Google Scholar
9. Holmen, G., Linnros, J., Nucl. Inst. Meth. Phys. Res. B22, 520 (1987).Google Scholar
10. Atwater, H.A., Thompson, C.V., Smith, H.I., J. Appl. Phys. 64, 2337 (1988).Google Scholar
11. Orwa, J. O., Nugent, K. W., Jamieson, D. N., Prawer, S., Phys. Rev. B62, 5461 (2000).Google Scholar
12. Robertson, J., Diam. Relat. Mater. 3, 361 (1994).Google Scholar
13. Hofsass, H., Feldermann, H., Merk, R., Sebastian, M., Ronning, C., Appl. Phys. A66, 153 (1998).Google Scholar
14. Lifshitz, Y., Kasi, S.R., Rabalais, J.W., Eckstein, W., Phys. Rev. B41, 16468 (1990).Google Scholar
15. Koponen, I., Hakovirta, M., Lappalainen, R., J. Appl. Phys. 78, 5837 (1995).Google Scholar
16. Logothetidis, S., Gioti, M., Patsalas, P., Charitidis, C., Carbon 37, 765 (1999).Google Scholar
17. Logothetidis, S., Lioutas, C.B., Gioti, M., Diam Rel. Mat. 7, 449 (1998).Google Scholar
18. JCPDS – Powder Diffraction File 41-1487.Google Scholar
19. Azaroff, L., ‘The powder method”, John Wiley and Sons, New York (1962).Google Scholar
20. Yamaoka, T., Oyoshi, K., Tagami, T., Arime, Y., Yamashita, K., Tanaka, S., Appl. Phys. Lett. 57, 1970 (1990).Google Scholar
21. Williams, J.S., Elliman, R.G., Brown, W.L. and Seidel, T.E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
22. Aspnes, D.E., Thin Solid Films 89, 249 (1982).Google Scholar
23. Patsalas, P., Handrea, M., Logothetidis, S., Gioti, M., Kennou, S., Kautek, W., Diam. Relat. Mater. (in press 2001).Google Scholar
24. SIEMENS Analytical X-ray Systems, REFSIM - Instructions Manual, Karlruhe (1996).Google Scholar