Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T07:27:10.174Z Has data issue: false hasContentIssue false

Surface State of InP (100) Substrates at Different Stages of A Cleaning

Published online by Cambridge University Press:  21 February 2011

A.A. Barriere
Affiliation:
LEMME, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cédex, France
B.B. Kim
Affiliation:
LEMME, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cédex, France
B. Mombelli
Affiliation:
LEMME, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cédex, France
B. Porte
Affiliation:
LEMME, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cédex, France
B. Desbat
Affiliation:
LSMC, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cédex, France
Get access

Abstract

The chemical species present at the surface of InP substrates at the different stages of a classical cleaning (degreasing, etching, de-oxidation and UHV annealing) were studied by infrared absorption (IR). Traces of oxides were detected from nuclear reaction analysis (NRA). With these analysis techniques, after the complete treatment, no defects were revealed at the surface of the substrates. RHEED patterns showed that they were well-reconstructed and SrF2 thin films were succesfully epitaxially grown on the semiconductor. However, capacitancevoltage (C-V) measurements performed on MIS (SrF2/InP) structures showed that to obtain a large modulation of the surface potential of the semiconductor, a sulfurization of the substrates ((NH4)2Sx) was required after the etching phase. These results show that many complementary analysis techniques must be used to completely describe the surface state of a cleaned semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Farrow, R.F.C., J. Phys. D7 (1975) 2436.Google Scholar
[2] Tu, C.W. and Schlier, A.R., Appl. Surf. Sci. 11 (1982) 355.Google Scholar
[3] Olivier, J., J. Appl. Phys. 51 (1980) 5406.Google Scholar
[4] Massies, J. and Lemaire-Dezaly, F., J. Appl. Phys. 55 (1985) 3136.CrossRefGoogle Scholar
[5] Massies, J. and Lemaire-Dezaly, F., J. Appl. Phys. 57 (1985) 237.Google Scholar
[6] Massies, J., Turco, F. and Contour, J.P., Jpn. J. Appl. Phys. 25 (1986) L664.Google Scholar
[7] Salètes, A., Turco, F., Massies, J. and Contour, J.P., J. Electrochem. Soc. 135 (1986)Google Scholar
[8] Gevers, G., Barrière, A.S., Grannec, J., Lozano, L. and Blanchard, B., Phys. Stat. Solid A81 (1984) 105.Google Scholar
[9] Barridre, A.S., Elfajri, A., Guégan, H., Mombelli, B. and Raoux, S., J. Appl. Phys. 71, 2 (1992) 709.Google Scholar
[10] Amsel, G. and Samuel, D., Anal. Chem. 39 (1967) 1689.Google Scholar
[11] Mayer, J.W. and Rimini, E., Ion Beam Handbook for Material Analysis (Acad. Press, NY, 1977) pp. 243245.Google Scholar
[12] Barret, J.H., Phys. Rev. B3 (1971) 1527.CrossRefGoogle Scholar
[13] Gemmed, D.S., Rev. Mod. Phys. 46 (1974) 129.Google Scholar
[14] Lindhard, J., Vidlensk, K. Dan.. Selsk. Nat. Fys. Medd. 36 (1965).Google Scholar
[15] Fan, J. et al. , Jpn. J. Appl. Phys. 27 (1988) L 1331.CrossRefGoogle Scholar
[16] Couturier, G., Chaouki, A., Ricard, H. and Barrire, A.S., J. Vac. Sci. Technol. B5, 4 (1987) 870.Google Scholar