Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T10:16:39.967Z Has data issue: false hasContentIssue false

Surfactant Effects of Indium on the Growth of AlN/GaN Distributed Bragg Reflectors via Metal Organic Vapor Phase Epitaxy

Published online by Cambridge University Press:  31 January 2011

L E Rodak
Affiliation:
lrodak@mix.wvu.edu, West Virginia University, Lane Dept. of Computer Science and Electrical Engineering, PO Box 6109, Morgantown, West Virginia, 26506, United States
Christopher M Miller
Affiliation:
c4miller4@gmail.com, West Virginia University, Lane Department of Computer Science and Electrical Engineering, MOrgantown, West Virginia, United States
D Korakakis
Affiliation:
Dimitris.Korakakis@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, West Virginia, United States
Get access

Abstract

Distributed Bragg Reflectors (DBRs) remain critical to the fabrication of various nitride based optoelectronic devices. In particular, DBRs are often employed for cavity formation in Resonant Cavity Light Emitting Diodes (RCLEDs) to enhance and obtain a more directional emission and also in Vertical Cavity Surface Emitting Lasers (VCSELs). As a result, epitaxially grown reflectors are attractive for direct integration in the device, reduced processing requirements, and the formation of narrow cavities. In the III-Nitride material system, Aluminum Nitride (AlN) and Gallium Nitride (GaN) offer a large contrast in refractive index and are therefore well suited for fabricating DBRs with high reflectivity and wide bandwidths using relatively few periods. However, material cracking arising from to the 2.4% lattice mismatch and difference in thermal expansion coefficient decreases reflectivity and is detrimental to the efficiency of subsequent device fabrication. Several techniques, such as superlattice insertion layers or the growth of AlxIn1-xN layers, have been employed to reduce strain and cracking in such structures. In this work, results of the use of indium as a surfactant in the Metal Organic Vapor Phase Epitaxy (MOVPE) of AlN/GaN DBRs will be discussed. Specifically, this study targets AlN/GaN DBRs with peak reflectivity at ranging from 465 nm to 540 nm. Indium has been used as a surfactant during growth by introducing trimethylindium into the system. It has been shown that crack formation is dependent on the flow of the indium precursor despite minimal indium incorporation into the lattice. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and can be used to reduce the total crack length in these structures by a factor of two.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, Shih-Yung, Horng, Ray-Hua, Wang, Wei-Kai, and Wuu, Dong-Sing, Jap. J. Appl. Phys. 45, 3433 (2006).10.1143/JJAP.45.3433Google Scholar
2. Lu, Tien-Chang, Chu, Jung-Tang, Chen, Shih-Wei, Cheng, Bo-Siao, Kuo, Hao-Chung, and Wang, Shing-Chung, Jap. J. Appl. Phys. 47, 6655 (2008).10.1143/JJAP.47.6655Google Scholar
3. Ng, H.M., Moustakas, T. D., and Chu, S. N. G.. Appl. Phys. Lett. 76, 2818 (2000).10.1063/1.126483Google Scholar
4. Huang, G. S., Lu, T. C., Yao, H. H., Kuo, H. C., Wang, S. C., Lin, Chih-Wei, and Chang, Li. Appl. Phys. Lett. 88, 061904 (2006).10.1063/1.2172007Google Scholar
5. Xie, Z. L., Xhang, R., Liu, B., Ji, X., Li, L., Liu, C., Jiang, R. L., Gong, H. M., Hong Zhao, P. Han, Shi, Y., and Zheng, Y. D., J. Cryst. Growth 298, 691 (2007).10.1016/j.jcrysgro.2006.10.216Google Scholar
6. Butté, R., Feltin, E., Dorsaz, J., Christmann, G., Carlin, J. F., Grandjean, N., Ilegems, M.. Jpn. J. Appl. Phys. 44, 7207 (2005).10.1143/JJAP.44.7207Google Scholar
7. Pattison, P. Morgan, David, Aurelien, Sharma, Rajat, Weisbuch, Claude, DenBaars, Steven, and Nakamura, Shuji. Appl. Phys. Lett. 90, 031111 (2007).10.1063/1.2430913Google Scholar
8. Optoelectronic Properties of Semiconductors and Superlattices, GaN and Related Materials II, edited by Pearton, S. J., (Canada, Gordon and Breach Science Publishers, 2000).Google Scholar
9. Carlin, J. F., Zellweger, C., Dorsaz, J., Nicolay, S., Christmann, G., Feltin, E., Butté, R., Grandjean, N.. Phys. Stat. Sol. (b) 242, 2326 (2005).10.1002/pssb.200560968Google Scholar
10. Someya, T. and Arakawa, Y.. Appl. Phys. Lett. 73, 3653 (1998).10.1063/1.122852Google Scholar
11. Carlin, J. F. and Ilegems, M., Appl. Phys. Lett. 83, 668 (2003).10.1063/1.1596733Google Scholar
12. Nakada, Naoyuki, Ishikawa, Hiroyasu, Egawa, Takashi, and Jimbo, Takashi. Jpn. J. Appl. Phys. 42, L144 (2003).10.1143/JJAP.42.L144Google Scholar
13. Cheong, H. S., Cuong, T. V., Kim, H. G., Park, J. Y., Kim, C. S., Hong, C. H., Baek, J. H., Lee, S. H., Kim, T. M., and Yu, Y. M., Phys. Stat. Sol. (a) 201, 27992802 (2004).10.1002/pssa.200405117Google Scholar
14. Yamaguchi, Shigeo, Kariya, Michihiko, Nitta, Shugo, Amano, Hiroshi, and Akasaki, Isamu. Appl. Surf. Sci. 159-160, 414 (2000).10.1016/S0169-4332(00)00087-8Google Scholar
15. Nicolay, S., Feltin, E., Carlin, J. F., Mosca, M., Nevou, L., Tchernycheva, M., Julien, F. H., Ilegems, M., and Grandjean, N., Appl. Phys. Lett. 88, 151902 (2006).10.1063/1.2186971Google Scholar
16. Keller, S., Heikman, S., Ben-yaacov, I., Shen, L., Denbaars, S. P., and Mishra, U. K., Phys. Stat. Sol. (a) 188, 775778 (2001).10.1002/1521-396X(200112)188:2<775::AID-PSSA775>3.0.CO;2-S3.0.CO;2-S>Google Scholar
17. tahtamouni, T. M. Al, Sedhain, A., Lin, J., and Jiang, H. X., Appl. Phys. Lett. 92, 092105 (2008).10.1063/1.2890416Google Scholar
18. Ng, H. M., Doppalapudi, D., IIiopoulos, E., and Moustakas, T. D., Appl. Phys. Lett. 74, 1036 (1999).Google Scholar