Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T12:12:13.176Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Cluster-Assembled Carbon Films

Published online by Cambridge University Press:  10 February 2011

P. Milani
Affiliation:
INEM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
P. Piseri
Affiliation:
INEM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
E. Barborini
Affiliation:
INEM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
A. Podestà
Affiliation:
INEM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
Get access

Abstract

Nanostructured carbon films have been grown by deposition of supersonic cluster beams. A novel pulsed microplasma cluster source allows to obtain cluster beams of high intensity and stability. Cluster growth and beam formation have been charaterized. Separation effects typical of supersonic expansions cause inhomogeneities of cluster distribution in the beam, depending on their masses. This effect, observed for the first time, has been carefully characterized. The deposited films have a low density porous structure based on nanometer-size grains. The coordination is essentially three-fold with a large number of defects. Film density, morphology and surface roughness can be controlled by varying the precursor cluster mass distribution. Applications of cluster-assembled carbon films will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robertson, J., Pure & Appl. Chem. 66, 1789 (1994)Google Scholar
2. Geis, M.W., Tamor, M.A., in Encyclopedia of Applied Physics, vol. 5, VCH Publisher, 1993 Google Scholar
3. Coll, B.F., Jaskie, J.E., Markham, J.L., Menu, E.P., Talin, A.A., Allmen, P. von, Mat. Res. Soc. Symp. Proc. vol. 498, 185 (1998)Google Scholar
4. Baugham, R.H. et al. , Science 284, 1340 (1999)Google Scholar
5. Niu, C., Sichel, E.K., Hoch, R., Tennent, H., Appl. Phys. Lett. 70, 1480 (1997)Google Scholar
6. Milani, P., Iannotta, S., Cluster Beam Deposition of Nanostructured Materials, Springer Verlag, Berlin, 1999 Google Scholar
7. Barborini, E., Piseri, P., Ferrari, A.C., Bassi, A. Li, Bottani, C.E., Milani, P., Chem. Phys.Lett. 300, 633 (1999).Google Scholar
8. Milani, P., Iannotta, S., Cluster Beam Synthesis of Nanostructured Materials, Springer Verlag, Berlin, 1999 Google Scholar
9. Barborini, E., Piseri, P., Milani, P., J. Phys. D: Appl. Phys. 10, LI05 (1999)Google Scholar
10. Barabasi, A.-L., Stanley, H.E., Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995 Google Scholar
11. Piseri, P., Milani, P. Iannotta, S., Int. J. Mass Spectrom. Ion Proc. 135, 23 (1996)Google Scholar
12. Colbert, D.T. et al. , Science 266, 1218 (1994)Google Scholar
13. Soederlund, J., et al. Phys. Rev. Lett. 80, 2386 (1998)Google Scholar
14. Piseri, P., Podestà, A., Barborini, E., Milani, P., J. Chem. Phys., submittedGoogle Scholar
15. Mora, J. Fernandez De La, Rosell-Llompart, J., J. Chem. Phys. 91, 2603 (1989).Google Scholar
16. Donadio, D. et al. Phys. Rev. Lett. 83, 776 (1999)Google Scholar
17. Mayer, S.T., Pekala, R.W., Kaschmitter, J.L., J. Electrochem. Soc. 140, 446 (1993)Google Scholar
18. Diederich, L. et al. , Appl. Phys. Lett. 75, 2662 (1999)Google Scholar
19. Ferrari, A. C., et al. , Europhys. Lett. 46, 245 (1999).Google Scholar