Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T06:17:46.126Z Has data issue: false hasContentIssue false

Synthesis and Nonlinearity of Triene Chromophores Containing the Cyclohexene Ring Structure

Published online by Cambridge University Press:  10 February 2011

Susan Ermer
Affiliation:
Lockheed Martin Advanced Technology Center, O/HI-32, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Steven M. Lovejoy
Affiliation:
Lockheed Martin Advanced Technology Center, O/HI-32, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Doris S. Leung
Affiliation:
Lockheed Martin Advanced Technology Center, O/HI-32, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Hope Warren
Affiliation:
Lockheed Martin Advanced Technology Center, O/HI-32, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Christopher R. Moylan
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Robert J. Twieg
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

A series of conjugated donor-acceptor trienes in which the central double bond is incorporated into an unsaturated isophorone, verbenone or chromone ring has been synthesized. In each case, the donor group consists of an amine and an aromatic or heterocyclic ring system, and the acceptor is the dicyanomethylidene group. The nonlinear optical properties of each of the compounds has been measured and correlated with its structure. The dipole moments and molecular hyperpolarizabilities of these compounds, like those of other conjugated polyenes, are large enough to be used as the active components of electro-optic polymers. Unlike other donor-acceptor polyenes, however, these compounds exhibit the thermal stability required for such applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Marder, S.R.; Beratan, D.N.; Cheng, L.-T. Science 1991, 252, 103.Google Scholar
2 Moylan, C.R.; Twieg, R.J.; Lee, V.Y; Swanson, S.A.; Betterton, K.M.; Miller, R.D. J. Am.Chem. Soc. 1993, 115, 12599.Google Scholar
3 Moylan, C.R.; Miller, R.D.; Twieg, R.J.; Lee, V.Y.; McComb, I.-H.; Ermer, S.; Lovejoy, S.M.; Leung, D.S. Proc. SPIE 1995, 2527, 150.Google Scholar
4 Marder, S.R.; Cheng, L.-T.; Tiemann, B.G.; Friedli, A.C.; Blanchard-Desce, M.; Perry, J.W.; Skindhøj, J. Science 1994, 263, 511.Google Scholar
5 Lytel, R.; Lipscomb, G.F.; Kenney, J.T.; Binkley, E. S in Polymers for Lightwave and Integrated Optics: Technology and Applications; Hornak, L.A., Ed.; Marcel Dekker: New York, 1992, pp 433472.Google Scholar
6 Moylan, C.R.; Ermer, S.; Lovejoy, S.M.; McComb, I.-H.; Leung, D.S.; Wortmann, R.; Krdmer, P.; Twieg, R.J., J. Am. Chem. Soc. 1996, 118, 1295012955.Google Scholar
7 Ermer, S.; Valley, J.F.; Lytel, R.; Lipscomb, G.F.; Van Eck, T.E.; Girton, D.G. Appl. Phys. Lett. 1992, 61, 2272.Google Scholar
8 Ermer, S.; Valley, J.F.; Lytel, R.; Lipscomb, G.F.; Van Eck, T.E.; Girton, D.G.; Leung, D.S.; Lovejoy, S.M. Proc. SPIE 1993, 1853, 183.Google Scholar
9 Ermer, S.; Leung, D.S.; Lovejoy, S.M.; Valley, J.F.; Stiller, M. Organic Thin Films for Photonics Applications Technical Digest 1993, 17, 50.Google Scholar
10 Ermer, S; Lovejoy, S; Leung, D.S.; in Polymers for Second-Order Nonlinear Optics, ACS Symposium Series 601, (American Chemical Society, Washington, D.C., 1995)Google Scholar
11 Girton, D.G.; Ermer, S.; Valley, J.F.; Van Eck, T.E. Organic Thin Films for Photonics Applications Technical Digest 1993, 17, 70.Google Scholar
12 Lemke, R. Chem. Ber. 1970, 103, 1894.Google Scholar
13 Lemke, R. Synthesis 1974, 359.Google Scholar
14 Lemke, R. Ger. Offen. 2 345 189, 1975; Chem. Abstr. 1975, 83, 29885s.Google Scholar
15 Mignani, G.; Soula, G.; Meyrueix, R. Fr., Demande FR 2 636 441, 1990; Chem. Abstr. 1990, 113, 181123n.Google Scholar
16 Gadret, G.; Kajzar, F.; Raimond, P. Proc. SPIE 1991, 1560, 226.Google Scholar
17 Man, H.T.; Shu, C.F.; Althoff, O.; McCulloch, I.A.; Polis, D.; Yoon, H.N. J. Appl. Poly. Sci. 1994, 53, 641.Google Scholar
18 Some examples of work in this area include: a) Lin, J.T.; Hubbard, M.A.; Marks, T.J.; Lin, W.; Wong, G.K. Chem. Mater. 1992, 4, 11481150; b) Zysset, B.; Ahlheim,. M.; Stähelin, M.; Lehr, F.; Prêtre, P.; Kaatz, P.; Günter, P., in Nonlinear Optical Properties of Organic Materials VI, Möhlmann, G.R., Ed.; Proc. SPIE 2025; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, 1993; pp 70–77; c). Meyrueix, R.; Tapolsky, G.; Dickens, M.; Lecomte, J.-P. In Nonlinear Optical Properties of Organic Materials VI, Möhlmann, G.R., Ed.; Proc. SPIE 2025; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, 1993; pp 117–128; d). Becker, M.W.; Sapochak, L.S.; Ghosen, R.; Xu, C.; Dalton, L.R.; Shi, Y.; Steier, W.H.; Jen, A.K.-Y. Chem. Mater. 1994, 6, 104–106; e) Sotoyama, W.; Tatsuura, S.; Yoshimura, T. Appl. Phys. Lett. 1994, 64, 2197–2199; f). Jen, A.K.-Y.; Drost, K.J.; Rao, V.P.; Cai, Y.; Liu, Y.-J.; Mininni, R.M.; Kenney, J.T.; Binkley, E.S.; Marder, S.R.; Dalton, L.R.; Xu, C. ACS Polymer Preprints 1994, 35(2), 130–131; g). Yu, D.; Yu, L.ACS Polymer Preprints 1994, 35(2), 132–133.Google Scholar
19 Moylan, C.R.; Miller, R.D.; Twieg, R.J.; Betterton, K.M.; Lee, V.Y.; Matray, T.J.; Nguyen, C. Chem. Mater. 1993, 5, 1499.Google Scholar
20 Moylan, C.R.; Miller, R.D.; Twieg, R.J.; Lee, V.Y. in Polymers for Second-Order Nonlinear Optics; Lindsay, G.A.; Singer, K.D., Eds.; ACS Symposium Series 601; American Chemical Society: Washington, DC, 1995, pp 6681.Google Scholar
21 Willetts, A.; Rice, J.E.; Burland, D.M.; Shelton, D.P. J. Chem. Phys. 1992, 97, 7590.Google Scholar
22 Oudar, J.L; Chemla, D.S. J. Chem. Phys. 1977, 66, 2664.Google Scholar
23 Cheng, L.-T.; Tam, W.; Feiring, A.; Rikken, G.L.J.A. Proc. SPIE 1990, 1337, 203.Google Scholar
24 Cheng, L.-T.; Tam, W.; Marder, S.R.; Stiegman, A.E.; Rikken, G.; Spangler, C.W. J. Phys. Chem. 1991, 95, 10643.Google Scholar
25 Moylan, C.R.; Walsh, C.A. Nonlin. Opt. 1993, 6, 113.Google Scholar
26 Miller, R.D.; Moylan, C.R.; Reiser, O.; Walsh, C.A. Chem. Mater. 1993, 5, 625.Google Scholar
27 Miller, R.D.; Lee, V.Y.; Moylan, C.R. Chem. Mater. 1994, 6, 1023.Google Scholar
28 Moylan, C.R. J. Phys. Chem. 1994, 98, 13513.Google Scholar
29 Cabrera, I.; Althoff, O.; Man, H.-T.; Yoon, H.N. Adv. Mater. 1994, 6, 43.Google Scholar
30 Shu, C.-F.; Tsai, W.-J.; Jen, A.K.-Y. Tetrahedron Lett. 1996, 37, 7055.Google Scholar
31 Shu, C.-F.; Tsai, W.J.; Chen, J.-Y.; Jen, A.K.-Y.; Zhang, Y.; Chen, T.-A. Chem. Commun. 1996, 2279.Google Scholar
32 Wortmann, R.; Lundquist, P.M.; Twieg, R.J.; Geletneky, C.; Moylan, C.R.; Jia, Y.; DeVoe, R.G.; Burland, D.M.; Bernal, M.-P.; Coufal, H.; Grygier, R.K.; Hoffnagle, J.A.; Jefferson, C.M.; Macfarlane, R.M.; Shelby, R.M.; Sincerbox, G.T. Appl. Phys. Lett. 1996, 69, 1657.Google Scholar
33 Ermer, S.; Lovejoy, S.M.; Leung, D.S.; Warren, H.; Moylan, C.R.;, R.D.; Twieg, R.J.; Chem. Mater., 1997, 9, 1437 Google Scholar
34 Bardakos, V.; Sandris, C. Org. Magn. Res. 1981, 15, 339.Google Scholar
35 Ermer, S.; Lovejoy, S.M.; Leung, D.S. Mat. Res. Soc. Symp. Proc. 1995, 392, 3.Google Scholar
36 Badcock, G.G.; Dean, F.M.; Robertson, A.; Whalley, W.B. J. Chem. Soc. 1950, 903.Google Scholar
37 Zeid, I.; El-Bary, H.A.; Yassin, S.; Zahran, M. Liebigs Ann. Chem. 1984, 186.Google Scholar
38 Eiden, F.; Kochs, I. Planta Med. 1967, 15, 81.Google Scholar