Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T13:23:05.103Z Has data issue: false hasContentIssue false

Synthesis of Bulk High Spin Density Charge Transfer Complexes for Organic Magnets

Published online by Cambridge University Press:  25 February 2011

Long Y. Chiang
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801
Ravindra B. Upasani
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801 Department of Physics, Princeton University, Princeton, New Jersey 08544
D. P. Goshorn
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801
P. Tindall
Affiliation:
Department of Chemistry, State University of New York, Stony Brook, New York 11794
Get access

Abstract

We describe a synthetic approach to the preparation of high spin density organic solid as a probe to organic ferromagnetism utilizing an external doping process to achieve a molecular sequence of alternate donors and acceptors in different spin states for, in principle, the ground state ferrimagnets. In contrast to the irreversibility of electron oxidations of many triaminobenzene derivatives, we found that, by substituting three hindered diisopropylamino groups on benzene, stable monocationic TDIAB radicals can be obtained. In the case of HDMAB its cationic radicals can be stabilized in a strong acid medium. The observed bulk spin densities of 0.18 — 0.23 spins 1/2 per donor molecule in TDIAB-PF6 and HDMAB-PF6 solids are significant comparing to the diamagnetic properties normally obtained in solids of simple cationic salts of planar organic donor molecules. The results imply that a small degree of molecular spin separation due to the steric effect can readily increase sharply the paramagnetic spin density of solids. We also found that the introduction of arsenic pentafluoride into molecular crystals disintegrates the long range order of crystal without rearranging the molecular stacking sequence in HMT complexes. Arsenic pentafluoride serves as not only the oxidant, but also the physical molecular separator. That results in a molecular spin separation of triplet dicationic HMT spins from each other at high doping level. This concept of molecular spin separation explains the observation of static magnetic data with an observed high spin density of many doped HMT charge transfer complexes. Without the molecular spin separation, the segregated-stack complexes, such as HMT-(AsF5.5)3.4 and HMT-DDQ-(AsF5.5)4.1, should instead give a low net bulk spin density with no triplet resonance after the intermolecular spin exchanges resemble to those observed in the case of HMT+2(CIO4)2 crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McConnell, H., Proc. R. A. Welch Found. Conf. 11, 144 (1967);Google Scholar
McConnell, H., J. Chem. Phys. 39, 1910 (1963).Google Scholar
2. Ovchinnikov, A. A., Dokl. Akad. Nauk. SSSR 225, 928 (1977);Google Scholar
Ovchinnikov, A. A., Theor. Chim. Acta. 47, 297 (1978);CrossRefGoogle Scholar
Klein, D. J. and Alexander, S. A., Studies in Phys. and Theo. Chem. 51, 404 (1987).Google Scholar
3. Buchachenko, A. L., Dokl. Akad. Nauk. SSSR 244, 1146 (1979);Google Scholar
Mataga, N., Theoret. Chim. Acta. 10, 372 (1968);CrossRefGoogle Scholar
Miller, J. S., Epstein, A. J., and Reiff, W. M., Chem. Rev. 88, 201 (1988).Google Scholar
4. Breslow, R., Pure & Appl. Chem. 54, 927 (1982);Google Scholar
Breslow, R., Jaun, B., Kluttz, R., Xia, C., Tetrahedron 38, 863 (1982);Google Scholar
LePage, T. J. and Breslow, R., J. Am. Chem. Soc., 109, 6412 (1987).Google Scholar
5. Chiang, L. Y., Johnston, D. C., Goshorn, D. P. and Bloch, A. N., Synth. Met. 27, B639 (1988);CrossRefGoogle Scholar
Chiang, L. Y., Johnston, D. C., Goshorn, D. P. and Bloch, A. N., J. Am. Chem. Soc. 111, 1925 (1989).Google Scholar
6. Torrance, J. B., Bagus, P. S., Johannsen, I., Nazzal, A. I., Parkin, S. S. and Batail, P., J. Appl. Phys. 63, 2962 (1988).CrossRefGoogle Scholar
7. Awaga, K., Sugano, T. and Kinoshita, M., Solid State Commun. 57, 453 (1986);Google Scholar
Sugawara, T., Murata, S., Kimura, K. and Iwamura, H., J. Am. Chem. Soc. 107, 5293 (1985);Google Scholar
Dormann, E., Nowak, M. J., Williams, K. A., Angus, R. O. and Wudl, F., J. Am. Chem. Soc. 109, 2594 (1987).Google Scholar
8. Sugawara, T., Bandow, S., Kimura, K., and Iwamura, H., J. Am. Chem. Soc., 1984, 106, 6450;Google Scholar
Sugawara, T., Murata, S., Kimura, K., and Iwamura, H., J. Am. Chem. Soc., 1985, 107, 5293.Google Scholar
9. Braun, D., Pure Appl. Chem. 30, 41 (1972).Google Scholar
10. Chiang, L. Y. and Thomann, H., J. Chem. Soc., Chem. Commun. 172 (1989).Google Scholar
11. Backer, H. J. and Baan, V. D., Rec. Trav. Chim. 56, 1175 (1937).Google Scholar
12. Effenberger, F., Auerand, E. Fischer, P., Chem. Ber. 152,1440 (1970).Google Scholar
13. Thomaides, J., Maslak, P. and Breslow, R., J. Am. Chem. Soc., 110, 3970 (1988).Google Scholar
14. Bechgaard, K. and Parker, V. D., J. Am. Chem. Soc. 94, 4749 (1972).Google Scholar
15. Chiang, L. Y., Johnston, D. C., Stokes, J. P. and Bloch, A. N., Synth. Met. 19, 697 (1987).Google Scholar
16. Chiang, L. Y. and Goshorn, D. P., Mol. Cryst. Liq. Cryst. 176, 229 (1989).Google Scholar
17. The data of Figure 2 were obtained by D. C. Johnston of Exxon Research and Engineering Co.Google Scholar