Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:11:46.868Z Has data issue: false hasContentIssue false

Synthesis of Layered Titanate Micro/nano-materials for Efficient Pollutant Treatment in Aqueous Media

Published online by Cambridge University Press:  21 March 2011

Y. X. Tang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.; zldong@ntu.edu.sg
Y. K. Lai
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.; zldong@ntu.edu.sg State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.aszchen@ntu.edu.sg
D. G. Gong
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.; zldong@ntu.edu.sg
Zhili Dong
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.; zldong@ntu.edu.sg
Z. Chen
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.; zldong@ntu.edu.sg
Get access

Abstract

In this work, the one dimensional (1D) titanate nanotubes (TNT)/nanowires (TNW), bulk titanate micro-particles (TMP), and three dimensional (3D) titanate microsphere particles (TMS) with high specific surface area were synthesized via different approaches. The chemical composition and structure of these products have been characterized by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM) study and Raman scattering spectroscopy. The as-prepared TMS shows excellent adsorption performance compared with TMP, TNW and TNT when methylene blue (MB) and PbII ions are used as representative organic and inorganic pollutants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Langmuir 14, 3160 (1998).Google Scholar
2. Bavykin, D. V., Friedrich, J. M., and Walsh, F. C., Adv. Mater. 18, 2807 (2006).Google Scholar
3. Sun, X. M. and Li, Y. D., Chem. Eur. J. 9, 2229 (2003).Google Scholar
4. Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., and Gao, X. P., Adv. Mater. 20, 2777 (2008).Google Scholar
5. Tang, Y. X., Gong, D. G., Lai, Y. K., Shen, Y. Q., Zhang, Y. Y., Huang, Y. Z., Tao, J., Lin, C. J., Dong, Z. L., and Chen, Z., J. Mater. Chem. 20, 10169 (2010).Google Scholar
6. Tang, Y. X., Lai, Y. K., Gong, D. G., Goh, K. H., Lim, T. T., Dong, Z. L., and Chen, Z., Chem. Eur. J. 16, 7704 (2010).Google Scholar
7. , Y.. Lim, W. L., Tang, Y., Cheng, Y. H., and Chen, Z., Nanoscale 2, 2751 (2010).Google Scholar
8. Riss, A., Elser, M. J., Bernardi, J., and Diwald, O., J. Am. Chem. Soc. 131, 6198 (2009).Google Scholar
9. Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P., and Zhu, H. Y., J. Phys. Chem. C 111, 6143 (2007).Google Scholar
10. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., and Grimes, C. A., Solar Energy Materials and Solar Cells 90, 2011 (2006).Google Scholar
11. Ghicov, A. and Schmuki, P., Chem. Commun., 2791 (2009).Google Scholar
12. Lai, Y. K., Gao, X. F., Zhuang, H. F., Huang, J. Y., Lin, C. J., and Jiang, L., Adv. Mater. 21, 3799 (2009).Google Scholar
13. Tang, Y. X., Tao, J., Zhang, Y. Y., Wu, T., Tao, H. J., and Bao, Z. G., Acta Physico-Chimica Sinica 24, 2191 (2008).Google Scholar
14. Tang, Y. X., Tao, J., Tao, H. J., Zhang, Y. Y., Li, Z. L., and Tian, X. L., Rare Metal Materials and Engineering 37, 2186 (2008).Google Scholar
15. Lai, Y. K., Zhuang, H. F., Xie, K. P., Gong, D. G., Tang, Y. X., Sun, L., Lin, C. J., and Chen, Z., New Journal of Chemistry 34, 1335 (2010).Google Scholar
16. Tang, Y. X., Tao, J., Tao, H. J., Wu, T., Wang, L., Zhang, Y. Y., Li, Z. L., and Tian, X. L., Acta Physico-Chimica Sinica 24, 1120 (2008).Google Scholar
17. Tang, Y. X., Tao, J., Zhang, Y. Y., Wu, T., Tao, H. J., and Zhu, Y. R., Transactions of Nonferrous Metals Society of China 19, 192 (2009).Google Scholar
18. Gao, T., Fjellvag, H., and Norby, P., Inorg. Chem. 48, 1423 (2009).Google Scholar
19. Ma, R. Z., Bando, Y., and Sasaki, T., Chem. Phys. Lett. 380, 577 (2003).Google Scholar
20. Tsai, C. C. and Teng, H. S., Chem. Mater. 18, 367 (2006).Google Scholar
21. Huang, J. Q., Huang, Z., Guo, W., Wang, M. L., Cao, Y. G., and Hong, M. C., Cryst. Growth Des. 8, 2444 (2008).Google Scholar
22. Mao, Y. B. and Wong, S. S., J. Am. Chem. Soc. 128, 8217 (2006).Google Scholar
23. Lai, Y., Chen, Y., Tang, Y., Gong, D., Chen, Z., and Lin, C., Electrochem. Commun. 11, 2268 (2009).Google Scholar
24. Yang, D. J., Zheng, Z. F., Liu, H. W., Zhu, H. Y., Ke, X. B., Xu, Y., Wu, D., and Sun, Y., J. Phys. Chem. C 112, 16275 (2008).Google Scholar
25. Zhu, H. Y., Gao, X. P., Lan, Y., Song, D. Y., Xi, Y. X., and Zhao, J. C., J. Am. Chem. Soc. 126, 8380 (2004).Google Scholar
26. Fateley, W. G., Dollish, F. R., McDevitt, N. T., and Bentley, F. F., “Infrared and Raman selection rules for molecular and lattice vibrations: The correlation Method.” Wiley-Interscience, New York, 1972.Google Scholar
27. Ma, R. Z., Fukuda, K., Sasaki, T., Osada, M., and Bando, Y., J. Phys. Chem. B 109, 6210 (2005).Google Scholar
28. Gao, T., Fjellvag, H., and Norby, P., J. Phys. Chem. B 112, 9400 (2008).Google Scholar