Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T01:11:50.729Z Has data issue: false hasContentIssue false

Synthesis of Ultrathin Ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

Published online by Cambridge University Press:  21 March 2011

André Anders
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720
Ashok V. Kulkarni
Affiliation:
2Read-Rite Corporation, 44100 Osgood Road, Fremont, California 94539
Get access

Abstract

The application of cathodic-arc-deposited films has been very slow due to the infamous macroparticle problem. We report about the application of the open Twist Filter as the key component to an advanced filtered cathodic arc system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film propertieshave been investigated with respect to application in the magnetic data storage industry. Films can be deposited in a reproducible manner where film thickness control relies on arc pulse counting once deposition rates have been calibrated. Films of 3 nm thickness have been deposited that passed acid and Battelle corrosion tests. Monte Carlo Simulation of energetic carbon deposition shows the formation of an intermixed transition layer of about 1 nm. The simulation indicates that because the displacement energy of carbon isnot smaller than of magnetic materials, films thinner than 2 nm are either not high in sp3 content or represent a carbidic phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wei, B., Zhang, B., and Johnson, K. E., J. Appl. Phys., vol. 83, pp. 24912499, 1998.Google Scholar
]2] Stanishevsky, A., Chaos, Solitons & Fractals, vol. 10, pp. 20452066, 1999.Google Scholar
[3] Bai, M., Kato, K., Umehara, N., Miyake, Y., Xu, J., and Tokisue, H., Surf. & Coat. Technol., vol. 126, pp. 181194, 2000.Google Scholar
[4] Shi, J. R., Shi, X., Sun, Z., Liu, E., Tay, B. K., and Jin, X. Z., Int. J. Mod. Phys. B, vol. 14, pp.315320, 2000.Google Scholar
[5] Monteiro, O. R., Delplancke-Ogletree, M.-P., and Brown, I. G., Thin Solid Films, vol. 342, pp. 100107, 1999.Google Scholar
[6] Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol. A, vol. 5, pp. 32873312, 1987.Google Scholar
[7] Bhatia, C. S., Fong, W., Chen, C. Y., Wei, J., Bogy, D., Anders, S., Stammler, T., and Stöhr, J., IEEE Trans. Magnetics, vol. 35, pp. 910915, 1999.Google Scholar
[8] Goglia, P. R., Berkowitz, J., Hoehn, J., Xidis, A., and Stover, L., Diamond Rel. Mat., vol. 10, pp. 271277, 2001.Google Scholar
[9] Li, X. D. and Bhushan, B., J. Mat. Res., vol. 14, pp. 23282337, 1999.Google Scholar
[10] Li, X. and Bhushan, B., Thin Solid Films, vol. 355 356, pp. 330336, 1999.Google Scholar
[11] Anders, S., Bhatia, C. S., Fong, W., Lo, R. Y., and Bogy, D. B., Mat. Res. Soc. Symp. Proc., vol. 517, pp. 371382, 1998.Google Scholar
[12] Brown, I. G., Rev. Sci. Instrum., vol. 65, pp. 30613081, 1994.Google Scholar
[13] Anders, A., IEEE Trans. of Plasma Sci., vol. 29, pp. in print, 2001.Google Scholar
[14] Yushkov, G. Y., Anders, A., Oks, E. M., and Brown, I. G., J. Appl. Phys., vol. 88, pp. 56185622, 2000.Google Scholar
[15] Kutzner, J. and Miller, H. C., J. Phys. D: Appl. Phys., vol. 25, pp. 686693, 1992.Google Scholar
[16] Fallon, P. J., Veerasamy, V. S., Davis, C. A., Robertson, J., Amaratunga, G. A. J., Milne, W. I., and Koskinen, J., Phys. Rev. B, vol. 48, pp. 47774782, 1993.Google Scholar
[17] Monteiro, O. and Anders, A., IEEE Trans. Plasma Sci., vol. 27, pp. 10301033, 1999.Google Scholar
[18] Sanders, D. M., Boercker, D. B., and Falabella, S., IEEE Trans. Plasma Sci., vol. 18, pp. 883894, 1990.Google Scholar
[19] Boxman, R. L., Zhitomirsky, V., Alterkop, B., Gidalevitch, E., Beilis, I., Keidar, M., and Goldsmith, S., Surf. & Coat. Technol, vol. 86 87, pp. 243253, 1996.Google Scholar
[20] Boxman, R. L. and Goldsmith, S., Surf. & Coat. Technol., vol. 52, pp. 3950, 1992.Google Scholar
[21] Anders, A., Surf. & Coat. Technol., vol. 120 121, pp. 319330, 1999.Google Scholar
[22] Aksenov, I. I., Belous, V. A., and Padalka, V. G., Instrum. Exp. Tech., vol. 21, pp. 14161418, 1978.Google Scholar
[23] Baldwin, D. A. and Fallabella, S., “Deposition processes utilizing a new filtered cathodic arc source,” Proc. of the 38th Annual Techn. Conf., Society of Vacuum Coaters, Chicago, 1995, pp. 309316.Google Scholar
[24] Anders, S., Anders, A., Dickinson, M. R., MacGill, R. A., and Brown, I. G., IEEE Trans. Plasma Sci., vol. 25, pp. 670674, 1997.Google Scholar
[25] Witke, T., Schuelke, T., Schultrich, B., Siemroth, P., and Vetter, J., Surf. & Coat. Technol, vol.126, pp. 8188, 2000.Google Scholar
[26] Welty, R. P., “Rectangular vacuum-arc plasma source.USA: Vapor Technologies, Inc., 1996.Google Scholar
[27] Gorokhovsky, V., “Apparatus for Application of Coatings in Vacuum, Rectangular Filter.US, 1995.Google Scholar
[28] Shi, X., Tay, B. K., Tan, H. S., Liu, E., Shi, J., Cheah, L. K., and Jin, X., Thin Solid Films, vol. 345, pp. 16, 1999.Google Scholar
[29] Shi, X., Tay, B. G., and Lau, S. P., Int. J. Mod. Phys. B, vol. 14, pp. 136153, 2000.Google Scholar
[30] Storer, J., Galvin, J. E., and Brown, I. G., J. Appl. Phys., vol. 66, pp. 52455250, 1989.Google Scholar
[31] Koskinen, J., Anttila, A., and Hirvonen, J.-P., Surf. Coat. Technol, vol. 47, pp. 180187, 1991.Google Scholar
[32] Anttila, A., Salo, J., and Lappalainen, R., Mat. Letters, vol. 24, pp. 153156, 1995.Google Scholar
[33] Anders, A. and MacGill, R. A., Surf. & Coat. Technol, pp. presented at the 27th ICMCTF, San Diego, april 10–14, 2000., 2000.Google Scholar
[34] Anders, A., Brown, I. G., MacGill, R. A., and Dickinson, M. R., J. Phys. D: Appl. Phys., vol.31, pp. 584587, 1998.Google Scholar
[35] Fong, W., “Fabrication and evaluation of 5 nm cathodic-arc carbon films for disk drive applications,” in Department of Mechanical Engineering, Computer Mechanics Laboratory. Berkeley, CA: University of California at Berkeley, 1999.Google Scholar
[36] Anders, A., Ryan, F. R., Fong, W., and Bhatia, C. S., “Ultrathin diamondlike carbon films deposited by filteredcarbon vacuum arcs,” IXX Int. Symp. on Discharges and Electrical Insulation in Vacuum, Xi'an, P.R. China, 2000, pp. accepted for publication in IEEE Trans. Plasma Sci. (2001).Google Scholar
[37] Pharr, G. M., Callahan, D. L., McAdams, D., Tsui, T. Y., Anders, S., Anders, A., Ager, J. W., Brown, I.G., Bhatia, C. S., Silva, S. R. P., and Robertson, J., Appl. Phys. Lett, vol. 68, pp. 779781, 1996.Google Scholar
[38] Schneider, D., Witke, T., Schwarz, T., Schöneich, B., and Schultrich, B., Surf. & Coat. Technol., vol. 126, pp. 136141, 2000.Google Scholar
[39] Schneider, J. M., Appl. Phys. Lett, vol. 76, pp. 15311533, 2000.Google Scholar
[40] Schneider, J. M., Anders, A., Hjörvarsson, B., Petrov, I., Macak, K., Helmerson, U., and Sundgren, J.-E., Appl. Phys. Lett, vol. 74, pp. 200202, 1999.Google Scholar
[41] Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985.Google Scholar
[42] Biersack, J. P., Nucl. Instrum. Meth. Phys. Res. B, vol. 59 60, pp. 2127, 1991.Google Scholar
[43] Nastasi, M., Mayer, J. W., and Hirvonen, J. K., Ion-Solid Interactions. Cambridge, UK: Cambridge University Press, 1996.Google Scholar