Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T04:14:53.388Z Has data issue: false hasContentIssue false

Targeting of a magnetic bionanomaterial to HepG2 human hepatocellular carcinoma cells using a galactose terminated lipid

Published online by Cambridge University Press:  03 June 2014

Andrew Booth
Affiliation:
School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom School of Materials, University of Manchester, M13 9PL, United Kingdom
Thomas P. Coxon
Affiliation:
School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
Julie E. Gough
Affiliation:
School of Materials, University of Manchester, M13 9PL, United Kingdom
Simon J. Webb
Affiliation:
School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
Get access

Abstract

Magnetic nanoparticle-vesicle aggregates (MNPVs), a controlled release nanostructure, have been enhanced with the inclusion of a novel galactose terminated lipid for cell targeting. Quartz crystal microgravimetry with dissipation (QCM-D) demonstrated that the galactose headgroup was available to bind Erythrina Crista-galli lectin (ECL) when the lipid was incorporated into a lipid bilayer. Similarly, UV-visible spectrophotometry indicated that ECL recognized the galactose headgroup in vesicles, leading to vesicle adhesion and aggregation. Finally, confocal fluorescence microscopy was used to assess the galactose-mediated interaction of both vesicles and MNPVs with HepG2 human hepatocellular carcinoma cells expressing the asialoglycoprotein (ASGPR) galactose receptor.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gossen, M. and Bujard, H., Proc. Natl. Acad. Sci. U. S. A. 89, 55475551 (1992).CrossRefGoogle Scholar
Schmole, A.-C., Hubner, R., Beller, M., Rolfs, A. and Frech, M. J., Curr. Pharm. Biotechnol. 14, 3645 (2013).Google Scholar
Murad, S., Grove, D., Lindberg, K. A., Reynolds, G., Sivarajah, A. and Pinnell, S. R., Proc. Natl. Acad. Sci. U. S. A. 78, 28792882 (1981).CrossRefGoogle Scholar
Torchillin, V. P., Nat. Rev. Drug Discov. 4, 145160 (2005).CrossRefGoogle Scholar
De Cogan, F., Booth, A., Gough, J. E. and Webb, S. J., Angew. Chem. Int. Ed. 50, 1229012293 (2011).Google Scholar
Safra, T., Muggia, F., Jeffers, S., Tsao-Wei, D. D., Groshen, S., Lyass, O., Henderson, R., Berry, G. and Gabizon, A., Ann. Oncol. 11, 10291033 (2000).CrossRefGoogle Scholar
Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J., J. Phys. Appl. Phys. 36, R167 (2003).CrossRefGoogle Scholar
Schwartz, A. L., Fridovich, S. E., Knowles, B. B. and Lodish, H. F., J. Biol. Chem. 256, 88788881 (1981).Google Scholar
Ashwell, G. and Harford, J., Annu. Rev. Biochem. 51, 531554 (1982).CrossRefGoogle Scholar
Sliedregt, L. A. J. M., Rensen, P. C. N, Rump, E. T. and van Santbrink, P. J., J. Med. Chem. 42, 609618 (1999).CrossRefGoogle Scholar
Šardzík, R., Noble, G. T., Weissenborn, M. J., Martin, A., Webb, S. J. and Flitsch, S. L., Beilstein J. Org. Chem. 6, 699703 (2010).CrossRefGoogle Scholar
Pilkington-Miksa, M. A., Sarkar, S., Writer, M. J., Barker, S. E., Shamlou, P. A., Hart, S. L., Hailes, H. C., Tabor, A. B., Eur. J. Org. Chem. 2008, 29002914 (2008).CrossRefGoogle Scholar
Managit, C., Kawakami, S., Yamashita, F. and Hashida, M., J. Pharm. Sci. 94, 22662275 (2005).Google Scholar
Mouline, Z., Mahon, E., Gomez, E., Barragan-Montero, V., Montero, J.-L. and Barboiu, M., Chem. Commun. 50, 731733 (2013).CrossRefGoogle Scholar
Reimhult, E., Kasemo, B., and Hook, F., Int. J. Mol. Sci. 10, 16831696 (2009).CrossRefGoogle Scholar
Chen, S., Zhao, X., Chen, J., Chen, J., Kuznetsova, L., Wong, S. S. and Ojima, I., Bioconjug. Chem. 21, 979987 (2010).Google Scholar