Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:15:34.674Z Has data issue: false hasContentIssue false

TEM Study on Defects in Epitaxial CdZnTe Films Deposited on (001)GaAs by Close-Spaced Sublimation

Published online by Cambridge University Press:  25 May 2012

Junning Gao
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Wanqi Jie
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Lin Luo
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Yanyan Yuan
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Tao Wang
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Shouzhi Xi
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Hui Yu
Affiliation:
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China.
Get access

Abstract

A transmission electron microscopy (TEM) study on defects in a 30 μm-thick epitaxial CZT film deposited on (001)GaAs via close-spaced sublimation was performed. The epi-layer is of good quality without twins. Dislocations and stacking faults are mainly gathered near the interface. The dislocations are extrinsic either of Lomer edge or 60° type. Pseudo extrinsic stacking faults consisting of two independent and oppositely oriented extrinsic dislocations have been found both on the (111) and the planes. L-shaped defects originated from the interface have been discovered. The near-interface-side of L is consisted of 3 compressed (111) planes and the lateral side is consisted of 3-4 misarranged planes. This L-shaped defect is induced by the absence of a misfit dislocation at the intersection between L and the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sellin, P. J., Nucl. Instrum. Meth. A 563, 1 (2006).Google Scholar
2. Yasuda, K., Niraula, M., Kusama, H., Yamamoto, Y., Tominaga, M., Takagi, K., Agata, Y. and Suzuki, K., IEEE T. Nucl. Sci. 52, 1951 (2005).Google Scholar
3. Kang, J., Parsai, E. I., Albin, D., Karpov, V. G. and Shvydka, D., Appl. Phys. Lett. 93, 223507 (2008).Google Scholar
4. Gao, J., Jie, W., Yuan, Y., Wang, T., Xie, Y., Wang, Y., Wang, Y., Tong, J., Yua, H. and Pan, G., CrystEngComm 14, 1790 (2011).Google Scholar
5. Antonelli, A., Justo, J. F. and Fazzio, A., Phys. Rev. B 60, 4711 (1999).Google Scholar
6. Yan, Y., Al-Jassim, M. M. and Demuth, T., J. Appl. Phys. 90, 3952 (2001).Google Scholar
7. Ouyang, L., Fan, J., Wang, S., Lu, X., Zhang, Y. H., Liu, X., Furdyn, J. K. and Smith, D. J., J. Cryst. Growth 330, 30 (2011).Google Scholar
8. Kim, Y. K., Lee, J. Y., Kim, H. S., Song, J. H. and Suh, S. H., J. Cryst. Growth 192, 109 (1998).Google Scholar
9. Stirman, J. N., Crozier, P. A., David, J. S., Phillipp, F., Brill, G. and Sivananthan, S., Appl. Phys. Lett. 84, 2530 (2004).Google Scholar
10. Petruzzello, J., Olego, D., Ghandhi, S. K., Taskar, N. R. and Bhat, I., Appl. Phys. Lett. 50, 1423 (1987).Google Scholar
11. Cheung, J. T., Khoshnevisan, M. and Magee, T., Appl. Phys. Lett. 43, 462 (1983).Google Scholar
12. Wood, S., Greggi, J., Farrow, R., Takei, W., Shirland, F. and Noreika, A., J. Appl. Phys. 55, 4225 (1984).Google Scholar
13. He, Z. B., Stolitchnova, I., Settera, N., Cantonib, M., Wojciechowski, T. and Karczewski, G., J. Alloys Compd. 484, 757 (2009).Google Scholar
14. Hobbs, A., Ueda, O., Nishijima, Y., Ebe, H., Shinohara, K. and Umebu, I., J. Cryst. Growth 126, 605 (1993).Google Scholar
15. Smith, D. J., Tsen, S. C. Y., Chen, Y. P., Faurie, J. P. and Sivananthan, S., Appl. Phys. Lett. 67, 1591 (1995).Google Scholar
16. Lee, H. S., Lee, J. Y., Kim, T. W. and Park, H. L., J. Cryst. Growth 233, 749 (2001).Google Scholar
17. Lee, H. S., Lee, J. Y., Kim, T. W. and Park, H. L., Appl. Phys. Lett. 83, 896 (2003).Google Scholar