Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T21:29:25.154Z Has data issue: false hasContentIssue false

Temperature Dependence of Electroresistivity, Negative and Positive Magnetoresistivity of Graphite/Diamond Nanocomposites and Onion-Like Carbon

Published online by Cambridge University Press:  15 March 2011

Anatoliy I. Romanenko
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentieva 3, Novosibirsk 630090, RUSSIA
Olga B. Anikeeva
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentieva 3, Novosibirsk 630090, RUSSIA
Alexander V. Okotrub
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentieva 3, Novosibirsk 630090, RUSSIA
Vladimir L. Kuznetsov
Affiliation:
Boreskov Institute of Catalysis SB RAS, Lavrentieva 5, Novosibirsk 630090, RUSSIA
Yuriy V. Butenko
Affiliation:
Boreskov Institute of Catalysis SB RAS, Lavrentieva 5, Novosibirsk 630090, RUSSIA
Andrew L. Chuvilin
Affiliation:
Boreskov Institute of Catalysis SB RAS, Lavrentieva 5, Novosibirsk 630090, RUSSIA
C. Dong
Affiliation:
National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Science, P.O.Box 603, Beijing 100080, China
Y. Ni
Affiliation:
National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Science, P.O.Box 603, Beijing 100080, China
Get access

Abstract

Here we present the result of measurements of electrical resistivity and magnetoresistivity of graphite/diamond nanocomposites (GDNC) and onion-like carbon (OLC) prepared by vacuum annealing of nanodiamond (ND) at various fixed temperatures. GDNC contain particles with a diamond core covered by closed curved graphitic shells. The electrical resistivity of annealed ND is characteristic of systems with localized electrons and can be described in terms of variable hopping-length hopping conductivity (VHLHC). The magnetoresistivity of OLC is negative in the range of field 0<B<2 T, and is positive at B>2 T. The conduction carrier concentration for OLC samples was estimated in the framework of the theory of negative magnetoresistance in semiconductors in the hopping conduction region. The free path length for conducting electrons at liquid helium temperature was estimated from the data on positive magnetoresistivity. The localization length of current carriers was also estimated. The determined parameters are in agreement with proposed structure model of OLC constructed using HRTEM data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kotosonov, A. S., JETP Lett. 43, 1, 30 (1986).Google Scholar
2. Kotosonov, A. S., JETP 93, 5(11), 1870 (1987).Google Scholar
3. Kotosonov, A. S., Solid State Phys. (Rus.) 33, 2616 (1991).Google Scholar
4. Kotosonov, A. S., and Kuvshinnikov, S. V., Phys.Lett. A230, 377 (1997).Google Scholar
5. Kotosonov, A. S., and Shilo, D. V., Carbon, 36, 1649 (1998).Google Scholar
6. Kotosonov, A. S., JETP Lett. 70, 468 (1999).Google Scholar
7. Kotosonov, A. S., and Atrazhev, V.V., JETP Lett. 72, 2, 76 (2000).Google Scholar
8. Kuznetsov, V.L., Chuvilin, A.L., Butenko, Yu.V., Mal'kov, I.Yu., Titov, V.M., Chem. Phys. Lett., 222, 343 (1994).Google Scholar
9. Butenko, Yu.V., Kuznetsov, V.L., Chuvilin, A.L., Kolomiichuk, V.N., Stankus, S. V., Khairulin, R. A., Segall, B., J. Appl. Phys., 88, 4380 (2000).Google Scholar
10. Kuznetsov, V.L., Butenko, Yu.V., Chuvilin, A.L., Romanenko, A.I. and Okotrub, A.V., Chem. Phys. Lett., 336, 397 (2001).Google Scholar
11. Mott, N.F., Davis, E.A., Electron processes in non-crystalline materials, Clarendon Press, Oxford, 1979.Google Scholar
12. Romanenko, A.I., Solid State Phys. (Russian). 27, 2526 (1985).Google Scholar
13. Romanenko, A.I., in: Aronov, A.A., Larkin, A.I., Lutovinov, V.S. (Eds.), Progress in high temperature superconductors, World Scientific, Singapore, 32, 72 (1992).Google Scholar
14. Romanenko, A.I., Zakharchuk, N.F., Naumov, N.G., Fedorov, V.E., Paek, U-Hyon, Materials Research Bulletin, 32, 1037 (1997).Google Scholar
15. Abrikosov, A. A., Bases of metal theory (Rus.), Nauka, Moscow (1987).Google Scholar
16. Al'tshuler, B. L., Aronov, A. G., and Khmel'nitskii, D. E., JETP Lett. 36, 5, 157 (1982).Google Scholar
17. Okotrub, A.V., Bulusheva, L.G., Kuznetsov, V.L., Butenko, Yu.V., Chuvilin, A.L., and Heggie, M.I., J. Phys. Chem. A105, 9781 (2001).Google Scholar