Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T19:47:06.829Z Has data issue: false hasContentIssue false

A Theoretical Study of p-Type Doping of ZnO: Problems and Solutions

Published online by Cambridge University Press:  21 March 2011

Yanfa Yan
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
S.B. Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
S.J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
S.T. Pantelides
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
Get access

Abstract

We present results of a comprehensive set of first-principles total-energy calculations of native and impurity-defect complexes in ZnO and use these results to elucidate the problems that occur in efforts to achieve p-type doping. The analysis naturally leads to new approaches that are likely to overcome the difficulties. The results provide detailed explanations of recent puzzling observations made in attempts to produce p-type ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Delahoy, A.E. and Cherny, M., Mater. Res. Soc. Symp. Proc. 426, 467 (1996).Google Scholar
[2] Tuttle, J.R., Contreras, M.A., Gillespie, T.J., Ramananthan, K.R., Tennant, A.L., Keane, J., Gabor, A.M., and Noufi, R., Progress in Photovoltaics, Research and Application 3, 235 (1995).Google Scholar
[3] Yu, P., Tang, Z.K., Wong, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Proc. 23th Int. Conf. Physics of Semiconductors, Berlin, 1996, vol. 2, p. 1453.Google Scholar
[4] Segawa, Y., Ohtomo, A., Kawasaki, M., Koinuma, H., Tang, Z.K., Yu, P., and Wong, G.K.L., Phys. Status Solidi (b) 202, 669 (1997).Google Scholar
[5] Bhargava, R., J. Cryst. Growth 59, 15 (1982).Google Scholar
[6] Neumark, G.F., Phys. Rev. Lett. 62, 1800 (1989).Google Scholar
[7] Minami, T., Sato, H., Nanto, H., and Tanaka, S., Jpn. J. Appl. Phys. 24, L781 (1985).Google Scholar
[8] Zhang, S.B., Wei, S.-H., and Zunger, A., J. Appl. Phys. 83, 3192 (1998).Google Scholar
[9] Minami, T., Sato, H., Nanto, H., and Tanaka, S., Jpn. J. Appl. Phys. 25, L776 (1986).Google Scholar
[10] Hu, J. and Gordon, R.G., Solar Cells 30, 437 (1991).Google Scholar
[11] Rouleau, C.M., Lowndes, D.H., McCamy, J.W., Budai, J.D., Poker, D.B., Geohegan, D.B., Puretzky, A., and Zhu, S., Appl. Phys. Lett. 67, 2545 (1995).Google Scholar
[12] Park, R.M., Troffer, M.B., Rouleau, C.M., DePuydt, J.M., and Haase, M.A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
[13] Kobayashi, A., Sankey, O.F., and Dow, J. D., Phys. Rev. B 28, 946 (1983).Google Scholar
[14] Sato, Y. and Sato, S., Thin Solid Films 281–282, 445 (1996).Google Scholar
[15] Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M., and Shimizu, A., Jpn. J. Appl. Phys. 36, L1453 (1997).Google Scholar
[16] Kohan, A.F., Ceder, G., Morgan, D., and Walle, C.G. Van de., Phys. Rev. B 61, 15019 (2000)Google Scholar
[17] Zhang, S.B., Wei, S.-H., and Zunger, A., Phys. Rev. B 63, 75205 (2001).Google Scholar
[18] Walle, C.G. Van de, Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
[19] Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 38, L166 (1999).Google Scholar
[20] Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 38, L1205 (1999).Google Scholar
[21] Guo, X.L., Tabata, H., and Kawai, T., J. Crystal Growth 223, 135 (2001).Google Scholar
[22] Guo, X.L., Choi, J.H., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 40, L177 (2001).Google Scholar
[23] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
[24] Reboredo, F.A. and Pantelides, S.T., Phys. Rev. Lett. 82, 1887 (1999).Google Scholar
[25] Chadi, D.J., Phys. Rev. Lett. 72, 534 (1994).Google Scholar
[26] Zhang, S.B., Wei, S.-H., and Zunger, A., Phys. Rev. Lett. 84, 1232 (2000).Google Scholar
[27] Cheong, B.-H., Park, C.H., and Chang, K.J., Phys. Rev. B 51, 10610 (1995).Google Scholar
[28] Laks, D.B., Walle, C.G. Van de, Neumark, G.F., and Pantelides, S.T., Phys. Rev. Lett. 66, 648 (1991).Google Scholar
[29] Laks, D.B., Walle, C.G. Van de, Neumark, G. F., Blochl, P.E., and Pantelides, S.T., Phys. Rev. B 45, 10965 (1992).Google Scholar
[30] Zhang, S.B. and Northup, J.E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
[31] Neugebauer, J. and Walle, C.G. Van der, Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
[32] Yan, Y., Zhang, S.B., and Pantelides, S.T., Phys. Rev. Lett. (2001), in press.Google Scholar
[33] Date, L., Radouane, K., Caquineau, H., Despax, B., Couderc, J.P., and Yousfi, M., Surface & Coatings Technology 116–119, 1042 (1999).Google Scholar
[34] Cleland, T.A., Hess, D.W., J. Electrochem. Soc. 136, 3103 (1989).Google Scholar