Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T16:31:07.807Z Has data issue: false hasContentIssue false

Thermal Metalorganic Chemical Vapor Deposition of Ti-Si-N Films for Diffusion Barrier Applications

Published online by Cambridge University Press:  15 February 2011

J. S. Custer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Paul Martin Smith
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Ronald V. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
A. W. Maverick
Affiliation:
Louisiana State University, Baton Rouge, LA 70803
D. A. Roberts
Affiliation:
Schumacher, Incorporated, Carlsbad, CA 92009
J. A. T. Norman
Affiliation:
Schumacher, Incorporated, Carlsbad, CA 92009
A. K. Hochberg
Affiliation:
Schumacher, Incorporated, Carlsbad, CA 92009
Get access

Abstract

Structurally disordered refractory ternary films such as titanium silicon nitride (Ti-Si-N) have potential as advanced diffusion barriers in future ULSI metallization schemes. Here we present results on purely thermal metalorganic chemical vapor deposition (CVD) of Ti-Si-N. At temperatures between 300 and 450°C, tetrakis(diethylamido)titanium (TDEAT), silane, and ammonia react to grow Ti-Si-N films with Si contents of 0-20 at.%. Typical impurity contents are 5-10 at.%H and 0.5 to 1.5 at.% C, with no O or other impurities detected in the bulk of the film. Although the film resistivity increases with increasing Si content, it remains below 1000 μΩ-cm for films with less than 5 at.% Si. These films are promising candidates for advanced diffusion barriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hillman, J. T., Srinivas, D., Foster, R. F., Graham, R. I., Shaapur, F., and McCartney, M. R., in Advanced Metallization for ULSI Applications in 1993, edited by Favreau, D. P, Shacham-Diamond, Y, and Horiike, Y (Materials Research Society, Pittsburgh, PA, 1994) pp. 167173.Google Scholar
2. Raaijmakers, I. J., Thin Solid Films 247, 1994, pp. 8593.Google Scholar
3. Jackson, R. L., Mclnerney, E. J., Roberts, B., Strupp, J., Velaga, A, Patel, S., and Halliday, L., in Advanced Metallization for ULSI Applications in 1994, edited by Blumenthal, R and Janssen, G (Materials Research Society, Pittsburgh, PA, 1994) pp. 223229.Google Scholar
4. Eizenberg, M., Littau, K., Ghanayem, S., Mak, A., Maeda, Y., Chang, M., and Sinha, A. K., Appl. Phys. Lett. 65 (19), 1994, pp. 24162418; M. Danek, M. Liao, J. Tseng, K. Littau, D. Saigal, H. Zhang, R. Mosely, and M. Eizenberg, Appl. Phys. Lett. 68, 1015 (1996).Google Scholar
5. Reid, J. S., Sun, X., Kolawa, E., and Nicolet, M.-A., IEEE Elec. Dev. Lett. 15 (8), 1994, pp. 298300.Google Scholar
6. Reid, J. S., Ph.D. Thesis, California Institute of Technology, May, 1995.Google Scholar
7. Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, edited by Rogl, P and Schuster, J. C (ASM International, Materials Park, OH, 1992) pp. 198202.Google Scholar