Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T13:43:16.871Z Has data issue: false hasContentIssue false

Threshold Voltage Performance of a-Si:H TFTs for Analog Applications

Published online by Cambridge University Press:  01 February 2011

K.S. Karim
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1Canada.
K. Sakariya
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1Canada.
A. Nathan
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1Canada.
Get access

Abstract

Amorphous silicon (a-Si:H) thin-film transistors (TFT) used in emerging, non-switch applications such as analog amplifiers or active loads, often have a bias at the drain terminal in addition to the gate that can alter their threshold voltage (VT) stability performance. At small gate voltages (0 ≤ VST ≤ 15 V) where the defect state creation instability mechanism is dominant, the presence of a bias at the TFT drain is found to decrease the shift in VTVT) compared to the ΔVT in the absence of a drain bias. In this paper, a ΔVT model accounting for TFT drain bias, is used to predict the performance of a-Si:H analog circuits in active pixel sensor (APS) medical xray imaging and active matrix, organic light emitting diode (AMOLED) display applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Karim, K.S., Nathan, A., Rowlands, J.A. in IEEE International Electron Devices Meeting (IEDM 2002) Technical Digest, 215 (2002).Google Scholar
2. Servati, P., Prakash, S., Nathan, A., Py, C., Vac, J.. Sci. Tech. A, 20(4), 1374 (2002).Google Scholar
3. Powell, M.J., App. Phys. Lett., 43, 15 (1983).Google Scholar
4. Powell, M.J., Berkel, C., French, I.D., Nicholls, D.H., App. Phys. Lett., 51, 1242 (1987).Google Scholar
5. Berkel, C. van, Powell, M.J., App. Phys. Lett., 51, 1094 (1987).Google Scholar
6. Powell, M.J., Berkel, C. van, Hughes, J.R., App. Phys. Lett., 54, 1323 (1989).Google Scholar
7. Stutzmann, M., Jackson, W.B., Tsai, C.C., Phys. Rev. B, 32, 23 (1985).Google Scholar
8. Leroux, T., Sol. St. Elec., 29, 47 (1986).Google Scholar
9. Jackson, W.B., Moyer, M.D., Phys. Rev. B, 36, 6217 (1987).Google Scholar
10. Powell, M.J., Deane, S.C., Milne, W.I., App. Phys. Lett., 60(2), 207 (1991).Google Scholar
11. Powell, M.J., van, C. Berkel, Franklin, A.R., Deane, S.C., Milne, W.I., Phys. Rev. B, 45, 4160 (1992).Google Scholar
12. Murthy, R.V.R., Servati, P., Nathan, A., Vac, J.. Sci. Tech. B, 18(2), 685 (2000).Google Scholar
13. Karim, K.S., Nathan, A., Hack, M., Milne, W.I., “Drain bias dependence of threshold voltage stability of amorphous silicon thin-film transistors,” App. Phys. Lett., in review.Google Scholar
14. Karim, K.S., Nathan, A., IEEE Elec. Dev. Lett., 22(10), 469 (2001).Google Scholar
15. Karim, K.S., Pixel Architectures for Digital Imaging Using Amorphous Silicon Technology, Ph.D. Thesis, University of Waterloo, 2002.Google Scholar
16. Chiang, C., Kanicki, J., and Takechi, K., Jpn. J. Appl. Phys., 37(1), 9A, 4704 (1998).Google Scholar
17. Huang, C., Teng, T., Tsai, J. and Cheng, H., Jpn. J. Appl. Phys., 39(1), 7A, 3867 (2000).Google Scholar
18. Sakariya, K., Servati, P., Striakhilev, D., and Nathan, A., Proc. Euro Display 2002: The 22nd International Display Research Conference, 609 (2002).Google Scholar