Skip to main content
×
×
Home

Titanium Dioxide Nanotubes Decorated with Nanoparticles for Dye Sensitized Solar Cells

  • Xuan Pan (a1), Yong Zhao (a1), Changhong Chen (a1) (a2) and Zhaoyang Fan (a1)
Abstract

The titanium dioxide (TiO2) nanoparticle (NP) structure has higher surface area and dye loading value to increase photon absorption while the nanotube (NT) can suppress the random walk phenomena to enhance carrier collection. In this work, hydrothermal method was utilized to infiltrate the TiO2 nanotube array by TiO2 nanoparticles with the aim of combining the advantages of both nanostructures to improve dye sensitized solar cells (DSSCs) efficiency. Structure morphology, device performance, and electrochemical properties were investigated. SEM observation confirmed that around 10 nm TiO2 nanoparticles uniformly covered the NT wall. TiO2 NT samples at three different lengths: 8 μm, 13 μm and 20 μm, decorated with different amount of nanoparticles were studied to optimize the structure for light absorption and electron transport to achieve high solar conversion efficiency. Electrochemical impedance spectroscopy (EIS) was also employed to investigate the cells’ parameters: electron lifetime (τ), diffusion length (Ln) et al, to gain insight on the device performance. The incident photon conversion efficiency (IPCE) was also reported.

Copyright
References
Hide All
1.O’Regan, B.; Grätzel, M. Nature 1991, 353, 737740.
2.Grätzel, M. Nature 2001, 414, 338344.
3.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
4.Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.
5.Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Current Opinion in Solid State and Materials Science 2007, 11, 318.
6.Alivov, Y.; Kuryatkov, V.; Pandikunta, M.; Rajanna, G.; Johnstone, D.; Bernussi, A.; Nikishin, S.; Fan, Z. Y. Mater. Res. Soc. Symp. Proc. 2009, 1178.
7.Linsebigler, A.L.; Lu, G.; Yates, J. T.; Chem Rev. 1995, 95, 735.
8.Hofmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.; Chem Rev. 1995, 95, 69.
9.Neale, N. R.; Kopidakis, N.; Lagemaat, J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B. 2005, 109, 2318323189.
10.Pasquier, A. D.; Stewart, M.; Spitler, T.; Coleman, M. Sol. Energy Mater. Sol. Cells 2009, 93, 4, 528535.
11.Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A. Sol. Energy Mater. Sol. Cells 2005, 87, 117131.
12.Bisquert, J. J. Phys. Chem. B. 2002, 325333.
13.Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrogen Energy 2006, 31, 19992017.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed